Matches in SemOpenAlex for { <https://semopenalex.org/work/W3184271504> ?p ?o ?g. }
- W3184271504 endingPage "100112" @default.
- W3184271504 startingPage "100112" @default.
- W3184271504 abstract "This paper presents the 'hyper-sinh', a variation of the m-arcsinh activation function suitable for Deep Learning (DL)-based algorithms for supervised learning, such as Convolutional Neural Networks (CNN). hyper-sinh, developed in the open source Python libraries TensorFlow and Keras, is thus described and validated as an accurate and reliable activation function for both shallow and deep neural networks. Improvements in accuracy and reliability in image and text classification tasks on five (N = 5) benchmark data sets available from Keras are discussed. Experimental results demonstrate the overall competitive classification performance of both shallow and deep neural networks, obtained via this novel function. This function is evaluated with respect to gold standard activation functions, demonstrating its overall competitive accuracy and reliability for both image and text classification." @default.
- W3184271504 created "2021-08-02" @default.
- W3184271504 creator A5027834981 @default.
- W3184271504 creator A5055259646 @default.
- W3184271504 creator A5069964937 @default.
- W3184271504 creator A5084101050 @default.
- W3184271504 date "2021-12-01" @default.
- W3184271504 modified "2023-10-16" @default.
- W3184271504 title "hyper-sinh: An accurate and reliable function from shallow to deep learning in TensorFlow and Keras" @default.
- W3184271504 cites W1498436455 @default.
- W3184271504 cites W1726410169 @default.
- W3184271504 cites W2094934653 @default.
- W3184271504 cites W2155353556 @default.
- W3184271504 cites W2270470215 @default.
- W3184271504 cites W2531409750 @default.
- W3184271504 cites W2795133139 @default.
- W3184271504 cites W2806647989 @default.
- W3184271504 cites W2809254203 @default.
- W3184271504 cites W2912581524 @default.
- W3184271504 cites W2917200238 @default.
- W3184271504 cites W2964347220 @default.
- W3184271504 cites W2965049427 @default.
- W3184271504 cites W2966217148 @default.
- W3184271504 cites W3023212480 @default.
- W3184271504 cites W3140599895 @default.
- W3184271504 doi "https://doi.org/10.1016/j.mlwa.2021.100112" @default.
- W3184271504 hasPublicationYear "2021" @default.
- W3184271504 type Work @default.
- W3184271504 sameAs 3184271504 @default.
- W3184271504 citedByCount "7" @default.
- W3184271504 countsByYear W31842715042021 @default.
- W3184271504 countsByYear W31842715042022 @default.
- W3184271504 countsByYear W31842715042023 @default.
- W3184271504 crossrefType "journal-article" @default.
- W3184271504 hasAuthorship W3184271504A5027834981 @default.
- W3184271504 hasAuthorship W3184271504A5055259646 @default.
- W3184271504 hasAuthorship W3184271504A5069964937 @default.
- W3184271504 hasAuthorship W3184271504A5084101050 @default.
- W3184271504 hasBestOaLocation W31842715041 @default.
- W3184271504 hasConcept C108583219 @default.
- W3184271504 hasConcept C111919701 @default.
- W3184271504 hasConcept C119857082 @default.
- W3184271504 hasConcept C121332964 @default.
- W3184271504 hasConcept C127313418 @default.
- W3184271504 hasConcept C13280743 @default.
- W3184271504 hasConcept C134306372 @default.
- W3184271504 hasConcept C153180895 @default.
- W3184271504 hasConcept C154945302 @default.
- W3184271504 hasConcept C163258240 @default.
- W3184271504 hasConcept C185798385 @default.
- W3184271504 hasConcept C33923547 @default.
- W3184271504 hasConcept C38365724 @default.
- W3184271504 hasConcept C41008148 @default.
- W3184271504 hasConcept C43214815 @default.
- W3184271504 hasConcept C50644808 @default.
- W3184271504 hasConcept C519991488 @default.
- W3184271504 hasConcept C62520636 @default.
- W3184271504 hasConcept C81363708 @default.
- W3184271504 hasConcept C92047909 @default.
- W3184271504 hasConceptScore W3184271504C108583219 @default.
- W3184271504 hasConceptScore W3184271504C111919701 @default.
- W3184271504 hasConceptScore W3184271504C119857082 @default.
- W3184271504 hasConceptScore W3184271504C121332964 @default.
- W3184271504 hasConceptScore W3184271504C127313418 @default.
- W3184271504 hasConceptScore W3184271504C13280743 @default.
- W3184271504 hasConceptScore W3184271504C134306372 @default.
- W3184271504 hasConceptScore W3184271504C153180895 @default.
- W3184271504 hasConceptScore W3184271504C154945302 @default.
- W3184271504 hasConceptScore W3184271504C163258240 @default.
- W3184271504 hasConceptScore W3184271504C185798385 @default.
- W3184271504 hasConceptScore W3184271504C33923547 @default.
- W3184271504 hasConceptScore W3184271504C38365724 @default.
- W3184271504 hasConceptScore W3184271504C41008148 @default.
- W3184271504 hasConceptScore W3184271504C43214815 @default.
- W3184271504 hasConceptScore W3184271504C50644808 @default.
- W3184271504 hasConceptScore W3184271504C519991488 @default.
- W3184271504 hasConceptScore W3184271504C62520636 @default.
- W3184271504 hasConceptScore W3184271504C81363708 @default.
- W3184271504 hasConceptScore W3184271504C92047909 @default.
- W3184271504 hasLocation W31842715041 @default.
- W3184271504 hasLocation W31842715042 @default.
- W3184271504 hasLocation W31842715043 @default.
- W3184271504 hasOpenAccess W3184271504 @default.
- W3184271504 hasPrimaryLocation W31842715041 @default.
- W3184271504 hasRelatedWork W2731899572 @default.
- W3184271504 hasRelatedWork W2767072113 @default.
- W3184271504 hasRelatedWork W2999805992 @default.
- W3184271504 hasRelatedWork W3116150086 @default.
- W3184271504 hasRelatedWork W3133861977 @default.
- W3184271504 hasRelatedWork W3184271504 @default.
- W3184271504 hasRelatedWork W4200173597 @default.
- W3184271504 hasRelatedWork W4312417841 @default.
- W3184271504 hasRelatedWork W4321369474 @default.
- W3184271504 hasRelatedWork W4380075502 @default.
- W3184271504 hasVolume "6" @default.
- W3184271504 isParatext "false" @default.
- W3184271504 isRetracted "false" @default.
- W3184271504 magId "3184271504" @default.