Matches in SemOpenAlex for { <https://semopenalex.org/work/W3184308504> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3184308504 abstract "The immensely complex realm of naval warfare presents challenges for which machine learning is uniquely suited. In this paper, we present a machine learning model to predict the location of unseen enemy ships in real time, based on the current known positions of other ships on the battlefield. More broadly, this research seeks to validate the ability of basic machine learning algorithms to make meaningful classifications and predictions of simulated adversarial naval behavior. Using gameplay data from World of Warships, we deployed an artificial neural network (ANN) model and a Random Forest model to serve as prediction engines that update as the battle progresses, overlaying probabilities over the battlefield map indicating the likelihood of the unseen ship being at each location. The models were trained and tested on gameplay data from a World of Warships tournament in which former naval officers served as commanders of competing fleets. This tournament structure ensured cohesive and coordinated naval fleet behavior, yielding data similar to that seen in real-world naval combat and increasing the applicability of our model. Both the Random Forest and ANN model were successful in their predictive capabilities, with the ANN proving to be the best method." @default.
- W3184308504 created "2021-08-02" @default.
- W3184308504 creator A5001217222 @default.
- W3184308504 creator A5007140382 @default.
- W3184308504 creator A5033461166 @default.
- W3184308504 creator A5039987414 @default.
- W3184308504 creator A5056474827 @default.
- W3184308504 creator A5056670558 @default.
- W3184308504 creator A5060460337 @default.
- W3184308504 date "2021-04-30" @default.
- W3184308504 modified "2023-09-26" @default.
- W3184308504 title "Enemy Location Prediction in Naval Combat Using Deep Learning" @default.
- W3184308504 cites W2071209384 @default.
- W3184308504 cites W230369851 @default.
- W3184308504 cites W2791067208 @default.
- W3184308504 cites W3074911901 @default.
- W3184308504 cites W85792852 @default.
- W3184308504 doi "https://doi.org/10.1109/sieds52267.2021.9483759" @default.
- W3184308504 hasPublicationYear "2021" @default.
- W3184308504 type Work @default.
- W3184308504 sameAs 3184308504 @default.
- W3184308504 citedByCount "0" @default.
- W3184308504 crossrefType "proceedings-article" @default.
- W3184308504 hasAuthorship W3184308504A5001217222 @default.
- W3184308504 hasAuthorship W3184308504A5007140382 @default.
- W3184308504 hasAuthorship W3184308504A5033461166 @default.
- W3184308504 hasAuthorship W3184308504A5039987414 @default.
- W3184308504 hasAuthorship W3184308504A5056474827 @default.
- W3184308504 hasAuthorship W3184308504A5056670558 @default.
- W3184308504 hasAuthorship W3184308504A5060460337 @default.
- W3184308504 hasConcept C114614502 @default.
- W3184308504 hasConcept C119857082 @default.
- W3184308504 hasConcept C127413603 @default.
- W3184308504 hasConcept C136975688 @default.
- W3184308504 hasConcept C154945302 @default.
- W3184308504 hasConcept C166957645 @default.
- W3184308504 hasConcept C169258074 @default.
- W3184308504 hasConcept C17744445 @default.
- W3184308504 hasConcept C195244886 @default.
- W3184308504 hasConcept C199539241 @default.
- W3184308504 hasConcept C2778627824 @default.
- W3184308504 hasConcept C2778757428 @default.
- W3184308504 hasConcept C2779669469 @default.
- W3184308504 hasConcept C2781187084 @default.
- W3184308504 hasConcept C33923547 @default.
- W3184308504 hasConcept C37736160 @default.
- W3184308504 hasConcept C38652104 @default.
- W3184308504 hasConcept C41008148 @default.
- W3184308504 hasConcept C41065033 @default.
- W3184308504 hasConcept C42475967 @default.
- W3184308504 hasConcept C50644808 @default.
- W3184308504 hasConcept C95457728 @default.
- W3184308504 hasConceptScore W3184308504C114614502 @default.
- W3184308504 hasConceptScore W3184308504C119857082 @default.
- W3184308504 hasConceptScore W3184308504C127413603 @default.
- W3184308504 hasConceptScore W3184308504C136975688 @default.
- W3184308504 hasConceptScore W3184308504C154945302 @default.
- W3184308504 hasConceptScore W3184308504C166957645 @default.
- W3184308504 hasConceptScore W3184308504C169258074 @default.
- W3184308504 hasConceptScore W3184308504C17744445 @default.
- W3184308504 hasConceptScore W3184308504C195244886 @default.
- W3184308504 hasConceptScore W3184308504C199539241 @default.
- W3184308504 hasConceptScore W3184308504C2778627824 @default.
- W3184308504 hasConceptScore W3184308504C2778757428 @default.
- W3184308504 hasConceptScore W3184308504C2779669469 @default.
- W3184308504 hasConceptScore W3184308504C2781187084 @default.
- W3184308504 hasConceptScore W3184308504C33923547 @default.
- W3184308504 hasConceptScore W3184308504C37736160 @default.
- W3184308504 hasConceptScore W3184308504C38652104 @default.
- W3184308504 hasConceptScore W3184308504C41008148 @default.
- W3184308504 hasConceptScore W3184308504C41065033 @default.
- W3184308504 hasConceptScore W3184308504C42475967 @default.
- W3184308504 hasConceptScore W3184308504C50644808 @default.
- W3184308504 hasConceptScore W3184308504C95457728 @default.
- W3184308504 hasLocation W31843085041 @default.
- W3184308504 hasOpenAccess W3184308504 @default.
- W3184308504 hasPrimaryLocation W31843085041 @default.
- W3184308504 hasRelatedWork W10353878 @default.
- W3184308504 hasRelatedWork W11904183 @default.
- W3184308504 hasRelatedWork W12492200 @default.
- W3184308504 hasRelatedWork W1474951 @default.
- W3184308504 hasRelatedWork W6160995 @default.
- W3184308504 hasRelatedWork W6847059 @default.
- W3184308504 hasRelatedWork W7637652 @default.
- W3184308504 hasRelatedWork W8756164 @default.
- W3184308504 hasRelatedWork W9657784 @default.
- W3184308504 hasRelatedWork W9972581 @default.
- W3184308504 isParatext "false" @default.
- W3184308504 isRetracted "false" @default.
- W3184308504 magId "3184308504" @default.
- W3184308504 workType "article" @default.