Matches in SemOpenAlex for { <https://semopenalex.org/work/W3184418626> ?p ?o ?g. }
- W3184418626 abstract "Data-driven models used for predicting soil temperature usually have increasing errors with increasing depth. By exploring the integration of knowledge-based and machine learning approaches, this study used a novel transformation of meteorological variables to increase prediction accuracy of soil temperature with increasing soil depth. Using datasets for two soil textures (silty clay loam and loamy coarse sand) at two locations with different climates, predictive models were developed for five depths (5, 10, 20, 50, and 100 cm) as a function of meteorological features using an adaptive neuro-fuzzy inference system (ANFIS). For each depth, soil temperature was predicted with nontransformation (NT), autocorrelation (AC), moving average (MA), and a combination of transformations (NT-ACMA) of meteorological features. Across all depths, the predictive accuracy of NT-ACMA models was significantly higher than that of NT, AC, and MA models for both soil textures (R2 = .99, RMSE = 1 °C for silty clay loam; R2 = .99, RMSE = 1.2 °C for loamy coarse sand), with increasing prediction accuracy as soil depth increases. Results for different soil textures and climates in 11 locations across the contiguous United States show that, except for 100-cm depth, there seems to be significant positive linear relationships between the best moving average and the solar inclination. This makes our NT-ACMA technique transferable to any location in the contiguous United States irrespective of the location, climate, and soil texture. We conclude that integrating lag times and moving averages of meteorological features can lead to better prediction of soil temperature at different soil depths." @default.
- W3184418626 created "2021-08-02" @default.
- W3184418626 creator A5003092135 @default.
- W3184418626 creator A5007805588 @default.
- W3184418626 creator A5008475752 @default.
- W3184418626 creator A5058006674 @default.
- W3184418626 creator A5067582989 @default.
- W3184418626 date "2021-07-26" @default.
- W3184418626 modified "2023-10-11" @default.
- W3184418626 title "Knowledge‐guided machine learning for improving daily soil temperature prediction across the United States" @default.
- W3184418626 cites W1182682356 @default.
- W3184418626 cites W1542813816 @default.
- W3184418626 cites W1570834090 @default.
- W3184418626 cites W1979182925 @default.
- W3184418626 cites W1983945090 @default.
- W3184418626 cites W1987950556 @default.
- W3184418626 cites W1990125899 @default.
- W3184418626 cites W1990368529 @default.
- W3184418626 cites W2001379895 @default.
- W3184418626 cites W2019207321 @default.
- W3184418626 cites W2034403960 @default.
- W3184418626 cites W2053792432 @default.
- W3184418626 cites W2058974917 @default.
- W3184418626 cites W2061540890 @default.
- W3184418626 cites W2073890622 @default.
- W3184418626 cites W2080453776 @default.
- W3184418626 cites W2084289362 @default.
- W3184418626 cites W2086157855 @default.
- W3184418626 cites W2101320768 @default.
- W3184418626 cites W2113076747 @default.
- W3184418626 cites W2113485151 @default.
- W3184418626 cites W2116432164 @default.
- W3184418626 cites W2143941867 @default.
- W3184418626 cites W2146165890 @default.
- W3184418626 cites W2159371584 @default.
- W3184418626 cites W2168692957 @default.
- W3184418626 cites W2332485577 @default.
- W3184418626 cites W2339447311 @default.
- W3184418626 cites W2484047785 @default.
- W3184418626 cites W2490667649 @default.
- W3184418626 cites W2527544784 @default.
- W3184418626 cites W2554802940 @default.
- W3184418626 cites W2556932322 @default.
- W3184418626 cites W2565787024 @default.
- W3184418626 cites W2588294210 @default.
- W3184418626 cites W2741160651 @default.
- W3184418626 cites W2751773190 @default.
- W3184418626 cites W2763357399 @default.
- W3184418626 cites W2770628799 @default.
- W3184418626 cites W2791138313 @default.
- W3184418626 cites W2809928955 @default.
- W3184418626 cites W2869473304 @default.
- W3184418626 cites W2887695198 @default.
- W3184418626 cites W2897663705 @default.
- W3184418626 cites W2902947938 @default.
- W3184418626 cites W2926448297 @default.
- W3184418626 cites W2941966292 @default.
- W3184418626 cites W2954670302 @default.
- W3184418626 cites W2997600677 @default.
- W3184418626 cites W3006103640 @default.
- W3184418626 cites W3016043885 @default.
- W3184418626 cites W3030251879 @default.
- W3184418626 cites W3040959847 @default.
- W3184418626 cites W3045292262 @default.
- W3184418626 cites W3091847034 @default.
- W3184418626 cites W4211007335 @default.
- W3184418626 cites W4245055982 @default.
- W3184418626 doi "https://doi.org/10.1002/vzj2.20151" @default.
- W3184418626 hasPublicationYear "2021" @default.
- W3184418626 type Work @default.
- W3184418626 sameAs 3184418626 @default.
- W3184418626 citedByCount "4" @default.
- W3184418626 countsByYear W31844186262021 @default.
- W3184418626 countsByYear W31844186262022 @default.
- W3184418626 countsByYear W31844186262023 @default.
- W3184418626 crossrefType "journal-article" @default.
- W3184418626 hasAuthorship W3184418626A5003092135 @default.
- W3184418626 hasAuthorship W3184418626A5007805588 @default.
- W3184418626 hasAuthorship W3184418626A5008475752 @default.
- W3184418626 hasAuthorship W3184418626A5058006674 @default.
- W3184418626 hasAuthorship W3184418626A5067582989 @default.
- W3184418626 hasBestOaLocation W31844186261 @default.
- W3184418626 hasConcept C105795698 @default.
- W3184418626 hasConcept C113578266 @default.
- W3184418626 hasConcept C139945424 @default.
- W3184418626 hasConcept C159390177 @default.
- W3184418626 hasConcept C159750122 @default.
- W3184418626 hasConcept C175963888 @default.
- W3184418626 hasConcept C33923547 @default.
- W3184418626 hasConcept C39432304 @default.
- W3184418626 hasConceptScore W3184418626C105795698 @default.
- W3184418626 hasConceptScore W3184418626C113578266 @default.
- W3184418626 hasConceptScore W3184418626C139945424 @default.
- W3184418626 hasConceptScore W3184418626C159390177 @default.
- W3184418626 hasConceptScore W3184418626C159750122 @default.
- W3184418626 hasConceptScore W3184418626C175963888 @default.
- W3184418626 hasConceptScore W3184418626C33923547 @default.
- W3184418626 hasConceptScore W3184418626C39432304 @default.
- W3184418626 hasIssue "5" @default.
- W3184418626 hasLocation W31844186261 @default.