Matches in SemOpenAlex for { <https://semopenalex.org/work/W3184654054> ?p ?o ?g. }
- W3184654054 endingPage "7588" @default.
- W3184654054 startingPage "7570" @default.
- W3184654054 abstract "Due to the unique feature of the three-dimensional convolution neural network, it is used in image classification. There are some problems such as noise, lack of labeled samples, the tendency to overfitting, a lack of extraction of spectral and spatial features, which has challenged the classification. Among the mentioned problems, the lack of experimental samples is the main problem that has been used to solve the methods in recent years. Among them, convolutional neural network-based algorithms have been proposed as a popular option for hyperspectral image analysis due to their ability to extract useful features and high performance. The traditional convolutional neural network (CNN) based methods mainly use the two-dimensional CNN for feature extraction, which makes the interband correlations of HSIs underutilized. The 3-D-CNN extracts the joint spectral-spatial information representation, but it depends on a more complex model. To address these issues, the report uses a 3-D fast learning block (depthwise separable convolution block and a fast convolution block) followed by a 2-D convolutional neural network was introduced to extract spectral-spatial features. Using a hybrid CNN reduces the complexity of the model compared to using 3-D-CNN alone and can also perform well against noise and a limited number of training samples. In addition, a series of optimization methods including batch normalization, dropout, exponential decay learning rate, and L2 regularization are adopted to alleviate the problem of overfitting and improve the classification results. To test the performance of this hybrid method, it is performed on the Salinas, University Pavia and Indian Pines datasets, and the results are compared with 2-D-CNN and 3-D-CNN deep learning models with the same number of layers." @default.
- W3184654054 created "2021-08-02" @default.
- W3184654054 creator A5007105503 @default.
- W3184654054 creator A5031406634 @default.
- W3184654054 creator A5049417604 @default.
- W3184654054 creator A5080928808 @default.
- W3184654054 creator A5089848354 @default.
- W3184654054 date "2021-01-01" @default.
- W3184654054 modified "2023-10-12" @default.
- W3184654054 title "Hyperspectral Image Classification Using a Hybrid 3D-2D Convolutional Neural Networks" @default.
- W3184654054 cites W1521436688 @default.
- W3184654054 cites W2042255844 @default.
- W3184654054 cites W2097092275 @default.
- W3184654054 cites W2097900616 @default.
- W3184654054 cites W2127229869 @default.
- W3184654054 cites W2136251662 @default.
- W3184654054 cites W2143277109 @default.
- W3184654054 cites W2162698522 @default.
- W3184654054 cites W2412588858 @default.
- W3184654054 cites W2500751094 @default.
- W3184654054 cites W2533102868 @default.
- W3184654054 cites W2547547136 @default.
- W3184654054 cites W2572303978 @default.
- W3184654054 cites W2598997103 @default.
- W3184654054 cites W2790473231 @default.
- W3184654054 cites W2792059834 @default.
- W3184654054 cites W2793357412 @default.
- W3184654054 cites W2809482722 @default.
- W3184654054 cites W2892075618 @default.
- W3184654054 cites W2914331134 @default.
- W3184654054 cites W2921445432 @default.
- W3184654054 cites W2922338554 @default.
- W3184654054 cites W2928182459 @default.
- W3184654054 cites W2937638900 @default.
- W3184654054 cites W2950185713 @default.
- W3184654054 cites W2980430266 @default.
- W3184654054 cites W2993134750 @default.
- W3184654054 cites W2993404698 @default.
- W3184654054 cites W2994639710 @default.
- W3184654054 cites W3004480865 @default.
- W3184654054 cites W3004968762 @default.
- W3184654054 cites W3030269884 @default.
- W3184654054 cites W3034961732 @default.
- W3184654054 cites W3040978759 @default.
- W3184654054 cites W3047443805 @default.
- W3184654054 cites W3047562107 @default.
- W3184654054 cites W3048631361 @default.
- W3184654054 cites W3101640299 @default.
- W3184654054 cites W3104795559 @default.
- W3184654054 cites W3105357426 @default.
- W3184654054 cites W4240485910 @default.
- W3184654054 doi "https://doi.org/10.1109/jstars.2021.3099118" @default.
- W3184654054 hasPublicationYear "2021" @default.
- W3184654054 type Work @default.
- W3184654054 sameAs 3184654054 @default.
- W3184654054 citedByCount "73" @default.
- W3184654054 countsByYear W31846540542021 @default.
- W3184654054 countsByYear W31846540542022 @default.
- W3184654054 countsByYear W31846540542023 @default.
- W3184654054 crossrefType "journal-article" @default.
- W3184654054 hasAuthorship W3184654054A5007105503 @default.
- W3184654054 hasAuthorship W3184654054A5031406634 @default.
- W3184654054 hasAuthorship W3184654054A5049417604 @default.
- W3184654054 hasAuthorship W3184654054A5080928808 @default.
- W3184654054 hasAuthorship W3184654054A5089848354 @default.
- W3184654054 hasBestOaLocation W31846540541 @default.
- W3184654054 hasConcept C115961682 @default.
- W3184654054 hasConcept C136886441 @default.
- W3184654054 hasConcept C144024400 @default.
- W3184654054 hasConcept C153180895 @default.
- W3184654054 hasConcept C154945302 @default.
- W3184654054 hasConcept C159078339 @default.
- W3184654054 hasConcept C19165224 @default.
- W3184654054 hasConcept C22019652 @default.
- W3184654054 hasConcept C2524010 @default.
- W3184654054 hasConcept C2777210771 @default.
- W3184654054 hasConcept C33923547 @default.
- W3184654054 hasConcept C41008148 @default.
- W3184654054 hasConcept C45347329 @default.
- W3184654054 hasConcept C50644808 @default.
- W3184654054 hasConcept C52622490 @default.
- W3184654054 hasConcept C75294576 @default.
- W3184654054 hasConcept C81363708 @default.
- W3184654054 hasConceptScore W3184654054C115961682 @default.
- W3184654054 hasConceptScore W3184654054C136886441 @default.
- W3184654054 hasConceptScore W3184654054C144024400 @default.
- W3184654054 hasConceptScore W3184654054C153180895 @default.
- W3184654054 hasConceptScore W3184654054C154945302 @default.
- W3184654054 hasConceptScore W3184654054C159078339 @default.
- W3184654054 hasConceptScore W3184654054C19165224 @default.
- W3184654054 hasConceptScore W3184654054C22019652 @default.
- W3184654054 hasConceptScore W3184654054C2524010 @default.
- W3184654054 hasConceptScore W3184654054C2777210771 @default.
- W3184654054 hasConceptScore W3184654054C33923547 @default.
- W3184654054 hasConceptScore W3184654054C41008148 @default.
- W3184654054 hasConceptScore W3184654054C45347329 @default.
- W3184654054 hasConceptScore W3184654054C50644808 @default.
- W3184654054 hasConceptScore W3184654054C52622490 @default.