Matches in SemOpenAlex for { <https://semopenalex.org/work/W3184807020> ?p ?o ?g. }
- W3184807020 endingPage "e0254893" @default.
- W3184807020 startingPage "e0254893" @default.
- W3184807020 abstract "The acquisition of Advanced Manufacturing Technologies (AMT), such as high-power fiber or CO 2 laser cutting equipment, generally involves high investment levels. Its payback period is usually more extended, and there is a moderate-to-high risk involved in adopting these technologies. In this work, we present a robust model that optimizes equipment investing decisions, considers the process’s technical constraint and finds an optimal production plan based on the available machinery. We propose a linear investment model based on historical demand information and take physical process parameters for a LASER cutting equipment, such as cutting speed and gas consumption. The model is then transformed into a robust optimization model which considers demand uncertainty. Second, we determine the optimal production plan based on the results of the robust optimization model and assuming that demand follows a normal distribution. As a case study, we decided on the investment and productive plan for a company that offers Laser-Beam Cutting (LBC) services. The case study validates the effectiveness of the proposed model and proves the robustness of the solution. For this specific application of the model, results showed that the optimal robust solution could increase the company’s expected profits by 6.4%." @default.
- W3184807020 created "2021-08-02" @default.
- W3184807020 creator A5001444090 @default.
- W3184807020 creator A5004055686 @default.
- W3184807020 creator A5018398414 @default.
- W3184807020 creator A5057805140 @default.
- W3184807020 date "2021-07-23" @default.
- W3184807020 modified "2023-10-16" @default.
- W3184807020 title "Determining optimal laser-beam cutting equipment investment through a robust optimization modeling approach" @default.
- W3184807020 cites W1820606394 @default.
- W3184807020 cites W1921403549 @default.
- W3184807020 cites W1963864252 @default.
- W3184807020 cites W1967249921 @default.
- W3184807020 cites W1968827269 @default.
- W3184807020 cites W1973735550 @default.
- W3184807020 cites W1974539983 @default.
- W3184807020 cites W1990275757 @default.
- W3184807020 cites W1993377828 @default.
- W3184807020 cites W1995285162 @default.
- W3184807020 cites W1996501148 @default.
- W3184807020 cites W2011594783 @default.
- W3184807020 cites W2012131152 @default.
- W3184807020 cites W2013774004 @default.
- W3184807020 cites W2019895143 @default.
- W3184807020 cites W2020745150 @default.
- W3184807020 cites W2023964406 @default.
- W3184807020 cites W2026451289 @default.
- W3184807020 cites W2029949645 @default.
- W3184807020 cites W2031279008 @default.
- W3184807020 cites W2032881410 @default.
- W3184807020 cites W2042637103 @default.
- W3184807020 cites W2042816232 @default.
- W3184807020 cites W2045271791 @default.
- W3184807020 cites W2047452591 @default.
- W3184807020 cites W2051931048 @default.
- W3184807020 cites W2075380781 @default.
- W3184807020 cites W2085834316 @default.
- W3184807020 cites W2087930939 @default.
- W3184807020 cites W2088794698 @default.
- W3184807020 cites W2118578357 @default.
- W3184807020 cites W2127331687 @default.
- W3184807020 cites W2130667121 @default.
- W3184807020 cites W2131116400 @default.
- W3184807020 cites W2140496876 @default.
- W3184807020 cites W2143817579 @default.
- W3184807020 cites W2166364496 @default.
- W3184807020 cites W2374866166 @default.
- W3184807020 cites W2589125922 @default.
- W3184807020 cites W2624663251 @default.
- W3184807020 cites W2794279078 @default.
- W3184807020 cites W2994895584 @default.
- W3184807020 cites W2996261098 @default.
- W3184807020 cites W2997442883 @default.
- W3184807020 cites W3005168238 @default.
- W3184807020 cites W3007453676 @default.
- W3184807020 cites W3012250961 @default.
- W3184807020 cites W3023164078 @default.
- W3184807020 cites W3036411661 @default.
- W3184807020 cites W3036970832 @default.
- W3184807020 cites W3037908001 @default.
- W3184807020 cites W3097001479 @default.
- W3184807020 cites W3097074849 @default.
- W3184807020 cites W3123499450 @default.
- W3184807020 cites W4231097794 @default.
- W3184807020 cites W4235274040 @default.
- W3184807020 doi "https://doi.org/10.1371/journal.pone.0254893" @default.
- W3184807020 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8301677" @default.
- W3184807020 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34297748" @default.
- W3184807020 hasPublicationYear "2021" @default.
- W3184807020 type Work @default.
- W3184807020 sameAs 3184807020 @default.
- W3184807020 citedByCount "2" @default.
- W3184807020 countsByYear W31848070202022 @default.
- W3184807020 crossrefType "journal-article" @default.
- W3184807020 hasAuthorship W3184807020A5001444090 @default.
- W3184807020 hasAuthorship W3184807020A5004055686 @default.
- W3184807020 hasAuthorship W3184807020A5018398414 @default.
- W3184807020 hasAuthorship W3184807020A5057805140 @default.
- W3184807020 hasBestOaLocation W31848070201 @default.
- W3184807020 hasConcept C104317684 @default.
- W3184807020 hasConcept C126255220 @default.
- W3184807020 hasConcept C17744445 @default.
- W3184807020 hasConcept C185592680 @default.
- W3184807020 hasConcept C193254401 @default.
- W3184807020 hasConcept C199539241 @default.
- W3184807020 hasConcept C27548731 @default.
- W3184807020 hasConcept C33923547 @default.
- W3184807020 hasConcept C41008148 @default.
- W3184807020 hasConcept C55493867 @default.
- W3184807020 hasConcept C63479239 @default.
- W3184807020 hasConcept C94625758 @default.
- W3184807020 hasConceptScore W3184807020C104317684 @default.
- W3184807020 hasConceptScore W3184807020C126255220 @default.
- W3184807020 hasConceptScore W3184807020C17744445 @default.
- W3184807020 hasConceptScore W3184807020C185592680 @default.
- W3184807020 hasConceptScore W3184807020C193254401 @default.
- W3184807020 hasConceptScore W3184807020C199539241 @default.
- W3184807020 hasConceptScore W3184807020C27548731 @default.