Matches in SemOpenAlex for { <https://semopenalex.org/work/W3184847723> ?p ?o ?g. }
- W3184847723 endingPage "486" @default.
- W3184847723 startingPage "476" @default.
- W3184847723 abstract "The purpose of this study was to analyze the ability of machine-learning (ML)-based computed tomography (CT)-derived fractional flow reserve (CT-FFR) to further improve the diagnostic performance of coronary CT angiography (cCTA) for ruling out significant coronary artery disease (CAD) during pre-transcatheter aortic valve replacement (TAVR) evaluation in patients with a high pre-test probability for CAD. CAD is a frequent comorbidity in patients undergoing TAVR. Current guidelines recommend its assessment before TAVR. If significant CAD can be excluded on cCTA, invasive coronary angiography (ICA) may be avoided. Although cCTA is a very sensitive test, it is limited by relatively low specificity and positive predictive value, particularly in high-risk patients. Overall, 460 patients (age 79.6 ± 7.4 years) undergoing pre-TAVR CT were included and examined with an electrocardiogram-gated CT scan of the heart and high-pitch scan of the vascular access route. Images were evaluated for significant CAD. Patients routinely underwent ICA (388/460), which was omitted at the discretion of the local Heart Team if CAD could be effectively ruled out on cCTA (72/460). CT examinations in which CAD could not be ruled out (CAD+) (n = 272) underwent additional ML-based CT-FFR. ML-based CT-FFR was successfully performed in 79.4% (216/272) of all CAD+ patients and correctly reclassified 17 patients as CAD negative. CT-FFR was not feasible in 20.6% because of reduced image quality (37/56) or anatomic variants (19/56). Sensitivity, specificity, positive predictive value, and negative predictive value were 94.9%, 52.0%, 52.2%, and 94.9%, respectively. The additional evaluation with ML-based CT-FFR increased accuracy by Δ+3.4% (CAD+: Δ+6.0%) and raised the total number of examinations negative for CAD to 43.9% (202/460). ML-based CT-FFR may further improve the diagnostic performance of cCTA by correctly reclassifying a considerable proportion of patients with morphological signs of obstructive CAD on cCTA during pre-TAVR evaluation. Thereby, CT-FFR has the potential to further reduce the need for ICA in this challenging elderly group of patients before TAVR." @default.
- W3184847723 created "2021-08-02" @default.
- W3184847723 creator A5007296816 @default.
- W3184847723 creator A5007487617 @default.
- W3184847723 creator A5007908608 @default.
- W3184847723 creator A5007943621 @default.
- W3184847723 creator A5009738378 @default.
- W3184847723 creator A5012931478 @default.
- W3184847723 creator A5015222755 @default.
- W3184847723 creator A5017148444 @default.
- W3184847723 creator A5024212960 @default.
- W3184847723 creator A5024400538 @default.
- W3184847723 creator A5039377663 @default.
- W3184847723 creator A5039581669 @default.
- W3184847723 creator A5041332182 @default.
- W3184847723 creator A5042630628 @default.
- W3184847723 creator A5043471559 @default.
- W3184847723 creator A5054977300 @default.
- W3184847723 creator A5057573859 @default.
- W3184847723 creator A5059098627 @default.
- W3184847723 creator A5079547103 @default.
- W3184847723 creator A5082911789 @default.
- W3184847723 creator A5087395048 @default.
- W3184847723 creator A5087819513 @default.
- W3184847723 date "2022-03-01" @default.
- W3184847723 modified "2023-10-01" @default.
- W3184847723 title "Combined cCTA and TAVR Planning for Ruling Out Significant CAD" @default.
- W3184847723 cites W1997588813 @default.
- W3184847723 cites W2031576042 @default.
- W3184847723 cites W2042463250 @default.
- W3184847723 cites W2046534269 @default.
- W3184847723 cites W2055253545 @default.
- W3184847723 cites W2071184146 @default.
- W3184847723 cites W2095680098 @default.
- W3184847723 cites W2105716445 @default.
- W3184847723 cites W2118193143 @default.
- W3184847723 cites W2118810625 @default.
- W3184847723 cites W2125695027 @default.
- W3184847723 cites W2127649313 @default.
- W3184847723 cites W2140991303 @default.
- W3184847723 cites W2144699697 @default.
- W3184847723 cites W2153785016 @default.
- W3184847723 cites W2323606101 @default.
- W3184847723 cites W2335916523 @default.
- W3184847723 cites W2516690363 @default.
- W3184847723 cites W2559829689 @default.
- W3184847723 cites W2566365448 @default.
- W3184847723 cites W2596816418 @default.
- W3184847723 cites W2669327297 @default.
- W3184847723 cites W2751630023 @default.
- W3184847723 cites W2788215720 @default.
- W3184847723 cites W2788847626 @default.
- W3184847723 cites W2807965844 @default.
- W3184847723 cites W2883854358 @default.
- W3184847723 cites W2888147975 @default.
- W3184847723 cites W2888691009 @default.
- W3184847723 cites W2920807567 @default.
- W3184847723 cites W2921388585 @default.
- W3184847723 cites W2922215374 @default.
- W3184847723 cites W2949819707 @default.
- W3184847723 cites W2968194066 @default.
- W3184847723 cites W2971442424 @default.
- W3184847723 cites W2981937687 @default.
- W3184847723 cites W2989976879 @default.
- W3184847723 cites W2995813765 @default.
- W3184847723 cites W2997889290 @default.
- W3184847723 cites W3029723311 @default.
- W3184847723 cites W3110695476 @default.
- W3184847723 cites W3112317470 @default.
- W3184847723 cites W3121305961 @default.
- W3184847723 cites W4205993996 @default.
- W3184847723 doi "https://doi.org/10.1016/j.jcmg.2021.09.013" @default.
- W3184847723 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34801449" @default.
- W3184847723 hasPublicationYear "2022" @default.
- W3184847723 type Work @default.
- W3184847723 sameAs 3184847723 @default.
- W3184847723 citedByCount "16" @default.
- W3184847723 countsByYear W31848477232022 @default.
- W3184847723 countsByYear W31848477232023 @default.
- W3184847723 crossrefType "journal-article" @default.
- W3184847723 hasAuthorship W3184847723A5007296816 @default.
- W3184847723 hasAuthorship W3184847723A5007487617 @default.
- W3184847723 hasAuthorship W3184847723A5007908608 @default.
- W3184847723 hasAuthorship W3184847723A5007943621 @default.
- W3184847723 hasAuthorship W3184847723A5009738378 @default.
- W3184847723 hasAuthorship W3184847723A5012931478 @default.
- W3184847723 hasAuthorship W3184847723A5015222755 @default.
- W3184847723 hasAuthorship W3184847723A5017148444 @default.
- W3184847723 hasAuthorship W3184847723A5024212960 @default.
- W3184847723 hasAuthorship W3184847723A5024400538 @default.
- W3184847723 hasAuthorship W3184847723A5039377663 @default.
- W3184847723 hasAuthorship W3184847723A5039581669 @default.
- W3184847723 hasAuthorship W3184847723A5041332182 @default.
- W3184847723 hasAuthorship W3184847723A5042630628 @default.
- W3184847723 hasAuthorship W3184847723A5043471559 @default.
- W3184847723 hasAuthorship W3184847723A5054977300 @default.
- W3184847723 hasAuthorship W3184847723A5057573859 @default.
- W3184847723 hasAuthorship W3184847723A5059098627 @default.