Matches in SemOpenAlex for { <https://semopenalex.org/work/W3184849221> ?p ?o ?g. }
- W3184849221 endingPage "863" @default.
- W3184849221 startingPage "863" @default.
- W3184849221 abstract "The extreme values of Young’s modulus for rhombic (orthorhombic) crystals using the necessary and sufficient conditions for the extremum of the function of two variables are analyzed herein. Seven stationary expressions of Young’s modulus are obtained. For three stationary values of Young’s modulus, simple analytical dependences included in the sufficient conditions for the extremum of the function of two variables are revealed. The numerical values of the stationary and extreme values of Young’s modulus for all rhombic crystals with experimental data on elastic constants from the well-known Landolt-Börnstein reference book are calculated. For three stationary values of Young’s modulus of rhombic crystals, a classification scheme based on two dimensionless parameters is presented. Rhombic crystals ((CH3)3NCH2COO·(CH)2(COOH)2, I, SC(NH2)2, (CH3)3NCH2COO·H3BO3, Cu-14 wt%Al, 3.0wt%Ni, NH4B5O8·4H2O, NH4HC2O4·1/2H2O, C6N2O3H6 and CaSO4) having a large difference between maximum and minimum Young’s modulus values were revealed. The highest Young’s modulus among the rhombic crystals was found to be 478 GPa for a BeAl2O4 crystal. More rigid materials were revealed among tetragonal (PdPb2; maximum Young’s modulus, 684 GPa), hexagonal (graphite; maximum Young’s modulus, 1020 GPa) and cubic (diamond; maximum Young’s modulus, 1207 GPa) crystals. The analytical stationary values of Young’s modulus for tetragonal, hexagonal and cubic crystals are presented as special cases of stationary values for rhombic crystals. It was found that rhombic, tetragonal and cubic crystals that have large differences between their maximum and minimum values of Young’s modulus often have negative minimum values of Poisson’s ratio (auxetics). We use the abbreviated term auxetics instead of partial auxetics, since only the latter were found. No similar relationship between a negative Poisson’s ratio and a large difference between the maximum and minimum values of Young’s modulus was found for hexagonal crystals." @default.
- W3184849221 created "2021-08-02" @default.
- W3184849221 creator A5083599844 @default.
- W3184849221 creator A5090500315 @default.
- W3184849221 date "2021-07-25" @default.
- W3184849221 modified "2023-10-10" @default.
- W3184849221 title "The Extreme Values of Young’s Modulus and the Negative Poisson’s Ratios of Rhombic Crystals" @default.
- W3184849221 cites W1498734336 @default.
- W3184849221 cites W1638993500 @default.
- W3184849221 cites W1891349118 @default.
- W3184849221 cites W1968879280 @default.
- W3184849221 cites W1971430652 @default.
- W3184849221 cites W1972321546 @default.
- W3184849221 cites W1973292373 @default.
- W3184849221 cites W1976162652 @default.
- W3184849221 cites W1984965838 @default.
- W3184849221 cites W1991651068 @default.
- W3184849221 cites W1995955892 @default.
- W3184849221 cites W1998231196 @default.
- W3184849221 cites W2005621211 @default.
- W3184849221 cites W2007944842 @default.
- W3184849221 cites W2010343055 @default.
- W3184849221 cites W2011436326 @default.
- W3184849221 cites W2023373044 @default.
- W3184849221 cites W2024208295 @default.
- W3184849221 cites W2030467733 @default.
- W3184849221 cites W2035200397 @default.
- W3184849221 cites W2037276037 @default.
- W3184849221 cites W2040569008 @default.
- W3184849221 cites W2042615732 @default.
- W3184849221 cites W2043690481 @default.
- W3184849221 cites W2044162910 @default.
- W3184849221 cites W2044761071 @default.
- W3184849221 cites W2045085331 @default.
- W3184849221 cites W2049043356 @default.
- W3184849221 cites W2049286683 @default.
- W3184849221 cites W2055640928 @default.
- W3184849221 cites W2056497220 @default.
- W3184849221 cites W2058832815 @default.
- W3184849221 cites W2061068478 @default.
- W3184849221 cites W2061301711 @default.
- W3184849221 cites W2065402715 @default.
- W3184849221 cites W2065467183 @default.
- W3184849221 cites W2068058570 @default.
- W3184849221 cites W2069634251 @default.
- W3184849221 cites W2073033714 @default.
- W3184849221 cites W2073164528 @default.
- W3184849221 cites W2074691934 @default.
- W3184849221 cites W2075115394 @default.
- W3184849221 cites W2076578485 @default.
- W3184849221 cites W2078165698 @default.
- W3184849221 cites W2078801117 @default.
- W3184849221 cites W2081647437 @default.
- W3184849221 cites W2084778705 @default.
- W3184849221 cites W2089235588 @default.
- W3184849221 cites W2091221127 @default.
- W3184849221 cites W2095094727 @default.
- W3184849221 cites W2100761804 @default.
- W3184849221 cites W2105887264 @default.
- W3184849221 cites W2113908947 @default.
- W3184849221 cites W2118724279 @default.
- W3184849221 cites W2125817354 @default.
- W3184849221 cites W2129983460 @default.
- W3184849221 cites W2138316560 @default.
- W3184849221 cites W2174042356 @default.
- W3184849221 cites W2314722901 @default.
- W3184849221 cites W2334800631 @default.
- W3184849221 cites W2410565377 @default.
- W3184849221 cites W2468303154 @default.
- W3184849221 cites W2493133447 @default.
- W3184849221 cites W2530219320 @default.
- W3184849221 cites W2534072909 @default.
- W3184849221 cites W2537814419 @default.
- W3184849221 cites W2571114014 @default.
- W3184849221 cites W2606205841 @default.
- W3184849221 cites W2608875271 @default.
- W3184849221 cites W2765442187 @default.
- W3184849221 cites W2770693837 @default.
- W3184849221 cites W2794914747 @default.
- W3184849221 cites W2799918098 @default.
- W3184849221 cites W2897560370 @default.
- W3184849221 cites W2903982463 @default.
- W3184849221 cites W2904832897 @default.
- W3184849221 cites W2916619829 @default.
- W3184849221 cites W2935628122 @default.
- W3184849221 cites W2968076852 @default.
- W3184849221 cites W2969993314 @default.
- W3184849221 cites W2996363118 @default.
- W3184849221 cites W3023297887 @default.
- W3184849221 cites W3086352848 @default.
- W3184849221 cites W3094966854 @default.
- W3184849221 cites W3103380231 @default.
- W3184849221 cites W3105834530 @default.
- W3184849221 cites W3116827947 @default.
- W3184849221 cites W3133645335 @default.
- W3184849221 cites W3171781693 @default.
- W3184849221 cites W3192276875 @default.
- W3184849221 doi "https://doi.org/10.3390/cryst11080863" @default.