Matches in SemOpenAlex for { <https://semopenalex.org/work/W3184911415> ?p ?o ?g. }
- W3184911415 endingPage "2827" @default.
- W3184911415 startingPage "2827" @default.
- W3184911415 abstract "Aboveground dry weight (AGDW) and leaf area index (LAI) are indicators of crop growth status and grain yield as affected by interactions of genotype, environment, and management. Unmanned aerial vehicle (UAV) based remote sensing provides cost-effective and non-destructive methods for the high-throughput phenotyping of crop traits (e.g., AGDW and LAI) through the integration of UAV-derived vegetation indexes (VIs) with statistical models. However, the effects of different modelling strategies that use different dataset compositions of explanatory variables (i.e., combinations of sources and temporal combinations of the VI datasets) on estimates of AGDW and LAI have rarely been evaluated. In this study, we evaluated the effects of three sources of VIs (visible, spectral, and combined) and three types of temporal combinations of the VI datasets (mono-, multi-, and full-temporal) on estimates of AGDW and LAI. The VIs were derived from visible (RGB) and multi-spectral imageries, which were acquired by a UAV-based platform over a wheat trial at five sampling dates before flowering. Partial least squares regression models were built with different modelling strategies to estimate AGDW and LAI at each prediction date. The results showed that models built with the three sources of mono-temporal VIs obtained similar performances for estimating AGDW (RRMSE = 11.86% to 15.80% for visible, 10.25% to 16.70% for spectral, and 10.25% to 16.70% for combined VIs) and LAI (RRMSE = 13.30% to 22.56% for visible, 12.04% to 22.85% for spectral, and 13.45% to 22.85% for combined VIs) across prediction dates. Mono-temporal models built with visible VIs outperformed the other two sources of VIs in general. Models built with mono-temporal VIs generally obtained better estimates than models with multi- and full-temporal VIs. The results suggested that the use of UAV-derived visible VIs can be an alternative to multi-spectral VIs for high-throughput and in-season estimates of AGDW and LAI. The combination of modelling strategies that used mono-temporal datasets and a self-calibration method demonstrated the potential for in-season estimates of AGDW and LAI (RRMSE normally less than 15%) in breeding or agronomy trials." @default.
- W3184911415 created "2021-08-02" @default.
- W3184911415 creator A5003308080 @default.
- W3184911415 creator A5007462806 @default.
- W3184911415 creator A5011534124 @default.
- W3184911415 creator A5021432193 @default.
- W3184911415 creator A5079547259 @default.
- W3184911415 date "2021-07-19" @default.
- W3184911415 modified "2023-10-18" @default.
- W3184911415 title "Comparison of Modelling Strategies to Estimate Phenotypic Values from an Unmanned Aerial Vehicle with Spectral and Temporal Vegetation Indexes" @default.
- W3184911415 cites W1442930683 @default.
- W3184911415 cites W1462825729 @default.
- W3184911415 cites W1826962995 @default.
- W3184911415 cites W1831050183 @default.
- W3184911415 cites W1900944452 @default.
- W3184911415 cites W1964217023 @default.
- W3184911415 cites W1965106709 @default.
- W3184911415 cites W1980375943 @default.
- W3184911415 cites W1982216854 @default.
- W3184911415 cites W1987415163 @default.
- W3184911415 cites W1989863789 @default.
- W3184911415 cites W1995711721 @default.
- W3184911415 cites W2000613913 @default.
- W3184911415 cites W2025967407 @default.
- W3184911415 cites W2035251667 @default.
- W3184911415 cites W2038546252 @default.
- W3184911415 cites W2039604550 @default.
- W3184911415 cites W2041777957 @default.
- W3184911415 cites W2044651338 @default.
- W3184911415 cites W2046292468 @default.
- W3184911415 cites W2055186043 @default.
- W3184911415 cites W2059488281 @default.
- W3184911415 cites W2063623478 @default.
- W3184911415 cites W2064636932 @default.
- W3184911415 cites W2067877300 @default.
- W3184911415 cites W2108806738 @default.
- W3184911415 cites W2109526246 @default.
- W3184911415 cites W2112458566 @default.
- W3184911415 cites W2113410727 @default.
- W3184911415 cites W2124121789 @default.
- W3184911415 cites W2125397877 @default.
- W3184911415 cites W2128866545 @default.
- W3184911415 cites W2140959043 @default.
- W3184911415 cites W2158863190 @default.
- W3184911415 cites W2163450852 @default.
- W3184911415 cites W2166516660 @default.
- W3184911415 cites W2272083780 @default.
- W3184911415 cites W2342626385 @default.
- W3184911415 cites W2552742159 @default.
- W3184911415 cites W2582705054 @default.
- W3184911415 cites W2646675373 @default.
- W3184911415 cites W2728224506 @default.
- W3184911415 cites W2767812726 @default.
- W3184911415 cites W2793761229 @default.
- W3184911415 cites W2914201290 @default.
- W3184911415 cites W2937353161 @default.
- W3184911415 cites W2941400914 @default.
- W3184911415 cites W2948355578 @default.
- W3184911415 cites W2953907326 @default.
- W3184911415 cites W2997159717 @default.
- W3184911415 cites W3081372383 @default.
- W3184911415 cites W3094057288 @default.
- W3184911415 cites W3097920954 @default.
- W3184911415 cites W3109304350 @default.
- W3184911415 cites W3118410054 @default.
- W3184911415 cites W3134474540 @default.
- W3184911415 cites W3169682761 @default.
- W3184911415 doi "https://doi.org/10.3390/rs13142827" @default.
- W3184911415 hasPublicationYear "2021" @default.
- W3184911415 type Work @default.
- W3184911415 sameAs 3184911415 @default.
- W3184911415 citedByCount "4" @default.
- W3184911415 countsByYear W31849114152022 @default.
- W3184911415 countsByYear W31849114152023 @default.
- W3184911415 crossrefType "journal-article" @default.
- W3184911415 hasAuthorship W3184911415A5003308080 @default.
- W3184911415 hasAuthorship W3184911415A5007462806 @default.
- W3184911415 hasAuthorship W3184911415A5011534124 @default.
- W3184911415 hasAuthorship W3184911415A5021432193 @default.
- W3184911415 hasAuthorship W3184911415A5079547259 @default.
- W3184911415 hasBestOaLocation W31849114151 @default.
- W3184911415 hasConcept C105795698 @default.
- W3184911415 hasConcept C114700698 @default.
- W3184911415 hasConcept C142724271 @default.
- W3184911415 hasConcept C176641082 @default.
- W3184911415 hasConcept C205649164 @default.
- W3184911415 hasConcept C22354355 @default.
- W3184911415 hasConcept C25989453 @default.
- W3184911415 hasConcept C2776133958 @default.
- W3184911415 hasConcept C33923547 @default.
- W3184911415 hasConcept C39432304 @default.
- W3184911415 hasConcept C62649853 @default.
- W3184911415 hasConcept C6557445 @default.
- W3184911415 hasConcept C71924100 @default.
- W3184911415 hasConcept C86803240 @default.
- W3184911415 hasConceptScore W3184911415C105795698 @default.
- W3184911415 hasConceptScore W3184911415C114700698 @default.
- W3184911415 hasConceptScore W3184911415C142724271 @default.