Matches in SemOpenAlex for { <https://semopenalex.org/work/W3184996951> ?p ?o ?g. }
- W3184996951 abstract "It is now clear that major malignancies are heterogeneous diseases associated with diverse molecular properties and clinical outcomes, posing a great challenge for more individualized therapy. In the last decade, cancer molecular subtyping studies were mostly based on transcriptomic profiles, ignoring heterogeneity at other (epi-)genetic levels of gene regulation. Integrating multiple types of (epi)genomic data generates a more comprehensive landscape of biological processes, providing an opportunity to better dissect cancer heterogeneity. Here, we propose sparse canonical correlation analysis for cancer classification (SCCA-CC), which projects each type of single-omics data onto a unified space for data fusion, followed by clustering and classification analysis. Without loss of generality, as case studies, we integrated two types of omics data, mRNA and miRNA profiles, for molecular classification of ovarian cancer ( n = 462), and breast cancer ( n = 451). The two types of omics data were projected onto a unified space using SCCA, followed by data fusion to identify cancer subtypes. The subtypes we identified recapitulated subtypes previously recognized by other groups (all P - values < 0.001), but display more significant clinical associations. Especially in ovarian cancer, the four subtypes we identified were significantly associated with overall survival, while the taxonomy previously established by TCGA did not ( P- values: 0.039 vs. 0.12). The multi-omics classifiers we established can not only classify individual types of data but also demonstrated higher accuracies on the fused data. Compared with iCluster, SCCA-CC demonstrated its superiority by identifying subtypes of higher coherence, clinical relevance, and time efficiency. In conclusion, we developed an integrated bioinformatic framework SCCA-CC for cancer molecular subtyping. Using two case studies in breast and ovarian cancer, we demonstrated its effectiveness in identifying biologically meaningful and clinically relevant subtypes. SCCA-CC presented a unique advantage in its ability to classify both single-omics data and multi-omics data, which significantly extends the applicability to various data types, and making more efficient use of published omics resources." @default.
- W3184996951 created "2021-08-02" @default.
- W3184996951 creator A5000466107 @default.
- W3184996951 creator A5006822602 @default.
- W3184996951 creator A5046597133 @default.
- W3184996951 creator A5055663278 @default.
- W3184996951 creator A5061410812 @default.
- W3184996951 creator A5089450812 @default.
- W3184996951 date "2021-07-22" @default.
- W3184996951 modified "2023-10-17" @default.
- W3184996951 title "Multi-Omics Data Fusion for Cancer Molecular Subtyping Using Sparse Canonical Correlation Analysis" @default.
- W3184996951 cites W1181052087 @default.
- W3184996951 cites W1548779692 @default.
- W3184996951 cites W1967827763 @default.
- W3184996951 cites W1967997862 @default.
- W3184996951 cites W1975900269 @default.
- W3184996951 cites W1987219048 @default.
- W3184996951 cites W2012352340 @default.
- W3184996951 cites W2036010272 @default.
- W3184996951 cites W2048136762 @default.
- W3184996951 cites W2059152510 @default.
- W3184996951 cites W2062390044 @default.
- W3184996951 cites W2065760681 @default.
- W3184996951 cites W2069334182 @default.
- W3184996951 cites W2079210771 @default.
- W3184996951 cites W2097255042 @default.
- W3184996951 cites W2098290597 @default.
- W3184996951 cites W2099826569 @default.
- W3184996951 cites W2109761160 @default.
- W3184996951 cites W2110237047 @default.
- W3184996951 cites W2115202379 @default.
- W3184996951 cites W2117968640 @default.
- W3184996951 cites W2120456037 @default.
- W3184996951 cites W2122189635 @default.
- W3184996951 cites W2123696077 @default.
- W3184996951 cites W2129812935 @default.
- W3184996951 cites W2131593373 @default.
- W3184996951 cites W2131994307 @default.
- W3184996951 cites W2132619562 @default.
- W3184996951 cites W2134118500 @default.
- W3184996951 cites W2134629862 @default.
- W3184996951 cites W2138644182 @default.
- W3184996951 cites W2141599838 @default.
- W3184996951 cites W2142497313 @default.
- W3184996951 cites W2146512944 @default.
- W3184996951 cites W2148339487 @default.
- W3184996951 cites W2149785901 @default.
- W3184996951 cites W2157840751 @default.
- W3184996951 cites W2167105148 @default.
- W3184996951 cites W2179105349 @default.
- W3184996951 cites W2264481086 @default.
- W3184996951 cites W2469269100 @default.
- W3184996951 cites W2591636916 @default.
- W3184996951 cites W2601868035 @default.
- W3184996951 cites W2768632638 @default.
- W3184996951 cites W2889646458 @default.
- W3184996951 cites W2911964244 @default.
- W3184996951 cites W2951091426 @default.
- W3184996951 cites W2999417355 @default.
- W3184996951 cites W4237723258 @default.
- W3184996951 cites W4239510810 @default.
- W3184996951 cites W4252676770 @default.
- W3184996951 doi "https://doi.org/10.3389/fgene.2021.607817" @default.
- W3184996951 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8341864" @default.
- W3184996951 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34367231" @default.
- W3184996951 hasPublicationYear "2021" @default.
- W3184996951 type Work @default.
- W3184996951 sameAs 3184996951 @default.
- W3184996951 citedByCount "8" @default.
- W3184996951 countsByYear W31849969512022 @default.
- W3184996951 countsByYear W31849969512023 @default.
- W3184996951 crossrefType "journal-article" @default.
- W3184996951 hasAuthorship W3184996951A5000466107 @default.
- W3184996951 hasAuthorship W3184996951A5006822602 @default.
- W3184996951 hasAuthorship W3184996951A5046597133 @default.
- W3184996951 hasAuthorship W3184996951A5055663278 @default.
- W3184996951 hasAuthorship W3184996951A5061410812 @default.
- W3184996951 hasAuthorship W3184996951A5089450812 @default.
- W3184996951 hasBestOaLocation W31849969511 @default.
- W3184996951 hasConcept C117220453 @default.
- W3184996951 hasConcept C121608353 @default.
- W3184996951 hasConcept C138958017 @default.
- W3184996951 hasConcept C153874254 @default.
- W3184996951 hasConcept C154945302 @default.
- W3184996951 hasConcept C157585117 @default.
- W3184996951 hasConcept C199360897 @default.
- W3184996951 hasConcept C2524010 @default.
- W3184996951 hasConcept C33923547 @default.
- W3184996951 hasConcept C41008148 @default.
- W3184996951 hasConcept C54355233 @default.
- W3184996951 hasConcept C60644358 @default.
- W3184996951 hasConcept C70721500 @default.
- W3184996951 hasConcept C83852419 @default.
- W3184996951 hasConcept C86803240 @default.
- W3184996951 hasConceptScore W3184996951C117220453 @default.
- W3184996951 hasConceptScore W3184996951C121608353 @default.
- W3184996951 hasConceptScore W3184996951C138958017 @default.
- W3184996951 hasConceptScore W3184996951C153874254 @default.
- W3184996951 hasConceptScore W3184996951C154945302 @default.
- W3184996951 hasConceptScore W3184996951C157585117 @default.