Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185082075> ?p ?o ?g. }
- W3185082075 endingPage "105054" @default.
- W3185082075 startingPage "105054" @default.
- W3185082075 abstract "Groundwater fluoride is posing a health risk to humans, and analyzing groundwater quality is time-wasting and expensive. Statistical methods provide a valuable approach to study the spatial distribution of groundwater fluoride. Random Forest (RF), Artificial Neural Network (ANN), and Logistic Regression (LR) were used in this study for groundwater fluoride prediction in Datong Basin. The groundwater chemistry of 482 groundwater samples was collected and used to figure out the performance of three statistical technologies and extract the main factors controlling the enrichment of fluoride in groundwater. The data was separated into two parts for the statistical analysis, 80% for training and 20% for testing. The Chi-squared was applied to select the most relevant variables, and TDS, Cl − , NO 3 − , Na + , HCO 3 − , SO 4 2− , K + , Zn, Ca 2+ , and Mg 2+ were selected as best inputs for the fluoride prediction. Models were evaluated using the confusion matrix and The receiver operating characteristic area under the curve ROC (AUC). The results suggest that within ten input variables, the accuracies of RF, ANN, and LR were 0.89, 0.85, and 0.76, respectively. The mean decrease in impurity (MDI) and permutation feature demonstrates that eight of ten parameters, including TDS, Cl − , NO 3 − , Na + , HCO 3 − , SO 4 2− , Ca 2+ and Mg 2+ are the variables influencing the groundwater fluoride in the study area. RF exhibited the best model with high conformity and confidence in predicting groundwater fluoride contamination in the study area. • Three algorithms were employed for the prediction of groundwater fluoride. • The variables influencing the fluoride in the study area were evaluated. • Python 3.7 was used for the analysis of the three models." @default.
- W3185082075 created "2021-08-02" @default.
- W3185082075 creator A5010892346 @default.
- W3185082075 creator A5066069365 @default.
- W3185082075 creator A5068367341 @default.
- W3185082075 creator A5073043543 @default.
- W3185082075 creator A5082290659 @default.
- W3185082075 date "2021-09-01" @default.
- W3185082075 modified "2023-10-12" @default.
- W3185082075 title "Prediction on the fluoride contamination in groundwater at the Datong Basin, Northern China: Comparison of random forest, logistic regression and artificial neural network" @default.
- W3185082075 cites W1502132756 @default.
- W3185082075 cites W1723129825 @default.
- W3185082075 cites W179546942 @default.
- W3185082075 cites W1975696034 @default.
- W3185082075 cites W1981459598 @default.
- W3185082075 cites W1986855442 @default.
- W3185082075 cites W1996031526 @default.
- W3185082075 cites W2001620205 @default.
- W3185082075 cites W2005690590 @default.
- W3185082075 cites W2011412119 @default.
- W3185082075 cites W2013341039 @default.
- W3185082075 cites W2013567744 @default.
- W3185082075 cites W2023567628 @default.
- W3185082075 cites W2037542480 @default.
- W3185082075 cites W2038913727 @default.
- W3185082075 cites W2040290522 @default.
- W3185082075 cites W2042699005 @default.
- W3185082075 cites W2044560204 @default.
- W3185082075 cites W2047609357 @default.
- W3185082075 cites W2048356807 @default.
- W3185082075 cites W2058863385 @default.
- W3185082075 cites W2069928051 @default.
- W3185082075 cites W2076722778 @default.
- W3185082075 cites W2080723493 @default.
- W3185082075 cites W2083343737 @default.
- W3185082075 cites W2090645616 @default.
- W3185082075 cites W2091097326 @default.
- W3185082075 cites W2097474065 @default.
- W3185082075 cites W2099534828 @default.
- W3185082075 cites W2107407839 @default.
- W3185082075 cites W2124005542 @default.
- W3185082075 cites W2139482802 @default.
- W3185082075 cites W2146948209 @default.
- W3185082075 cites W2149048950 @default.
- W3185082075 cites W2149186406 @default.
- W3185082075 cites W2156931039 @default.
- W3185082075 cites W2170023454 @default.
- W3185082075 cites W2346357836 @default.
- W3185082075 cites W2594013227 @default.
- W3185082075 cites W2738579052 @default.
- W3185082075 cites W2739881626 @default.
- W3185082075 cites W2740570758 @default.
- W3185082075 cites W2742408064 @default.
- W3185082075 cites W2834213610 @default.
- W3185082075 cites W2883377287 @default.
- W3185082075 cites W2911964244 @default.
- W3185082075 cites W2912116308 @default.
- W3185082075 cites W2933589034 @default.
- W3185082075 cites W2982097326 @default.
- W3185082075 cites W2995394538 @default.
- W3185082075 cites W3017716518 @default.
- W3185082075 doi "https://doi.org/10.1016/j.apgeochem.2021.105054" @default.
- W3185082075 hasPublicationYear "2021" @default.
- W3185082075 type Work @default.
- W3185082075 sameAs 3185082075 @default.
- W3185082075 citedByCount "22" @default.
- W3185082075 countsByYear W31850820752022 @default.
- W3185082075 countsByYear W31850820752023 @default.
- W3185082075 crossrefType "journal-article" @default.
- W3185082075 hasAuthorship W3185082075A5010892346 @default.
- W3185082075 hasAuthorship W3185082075A5066069365 @default.
- W3185082075 hasAuthorship W3185082075A5068367341 @default.
- W3185082075 hasAuthorship W3185082075A5073043543 @default.
- W3185082075 hasAuthorship W3185082075A5082290659 @default.
- W3185082075 hasConcept C105795698 @default.
- W3185082075 hasConcept C109007969 @default.
- W3185082075 hasConcept C112570922 @default.
- W3185082075 hasConcept C114793014 @default.
- W3185082075 hasConcept C127313418 @default.
- W3185082075 hasConcept C151956035 @default.
- W3185082075 hasConcept C154945302 @default.
- W3185082075 hasConcept C16674752 @default.
- W3185082075 hasConcept C166957645 @default.
- W3185082075 hasConcept C169258074 @default.
- W3185082075 hasConcept C179104552 @default.
- W3185082075 hasConcept C185592680 @default.
- W3185082075 hasConcept C187320778 @default.
- W3185082075 hasConcept C18903297 @default.
- W3185082075 hasConcept C191935318 @default.
- W3185082075 hasConcept C205649164 @default.
- W3185082075 hasConcept C2780828025 @default.
- W3185082075 hasConcept C33923547 @default.
- W3185082075 hasConcept C39432304 @default.
- W3185082075 hasConcept C41008148 @default.
- W3185082075 hasConcept C50644808 @default.
- W3185082075 hasConcept C76177295 @default.
- W3185082075 hasConcept C76886044 @default.
- W3185082075 hasConcept C86803240 @default.