Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185152180> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3185152180 startingPage "16" @default.
- W3185152180 abstract "The independent set polynomial of a graph has one variable for each vertex and one monomial for each independent set, comprising the product of the corresponding variables. Given a graph G on n vertices and a vector p ∈ [0,1)ⁿ, a central problem in statistical mechanics is determining whether the independent set polynomial of G is non-vanishing in the polydisk of p, i.e., whether |Z_G(x)| > 0 for every x ∈ ℂⁿ such that |x_i| ≤ p_i. Remarkably, when this holds, Z_G(-p) is a lower bound for the avoidance probability when G is a dependency graph for n events whose probabilities form vector p. A local sufficient condition for |Z_G| > 0 in the polydisk of p is the Lovasz Local Lemma (LLL). In this work we derive several new results on the efficient evaluation and bounding of Z_G. Our starting point is a monotone mapping from subgraphs of G to truncations of the tree of self-avoiding walks of G. Using this mapping our first result is a local upper bound for Z(-p), similar in spirit to the local lower bound for Z(-p) provided by the LLL. Next, using this mapping, we show that when G is chordal, Z_G can be computed exactly and in linear time on the entire complex plane, implying perfect sampling for the hard-core model on chordal graphs. We also revisit the task of bounding Z(-p) from below, i.e., the LLL setting, and derive four new lower bounds of increasing sophistication. Already our simplest (and weakest) bound yields a strict improvement of the famous asymmetric LLL, i.e., a strict relaxation of the inequalities of the asymmetric LLL without any further assumptions. This new asymmetric local lemma is sharp enough to recover Shearer’s optimal bound in terms of the maximum degree Δ(G). We also apply our more sophisticated bounds to estimate the zero-free region of the hard-core model on the triangular lattice (hard hexagons model)." @default.
- W3185152180 created "2021-08-02" @default.
- W3185152180 creator A5021300666 @default.
- W3185152180 creator A5081841491 @default.
- W3185152180 date "2021-01-01" @default.
- W3185152180 modified "2023-09-23" @default.
- W3185152180 title "Local Approximations of the Independent Set Polynomial" @default.
- W3185152180 doi "https://doi.org/10.4230/lipics.icalp.2021.8" @default.
- W3185152180 hasPublicationYear "2021" @default.
- W3185152180 type Work @default.
- W3185152180 sameAs 3185152180 @default.
- W3185152180 citedByCount "1" @default.
- W3185152180 countsByYear W31851521802021 @default.
- W3185152180 crossrefType "proceedings-article" @default.
- W3185152180 hasAuthorship W3185152180A5021300666 @default.
- W3185152180 hasAuthorship W3185152180A5081841491 @default.
- W3185152180 hasConcept C114614502 @default.
- W3185152180 hasConcept C118615104 @default.
- W3185152180 hasConcept C122818955 @default.
- W3185152180 hasConcept C132525143 @default.
- W3185152180 hasConcept C134306372 @default.
- W3185152180 hasConcept C160446614 @default.
- W3185152180 hasConcept C33923547 @default.
- W3185152180 hasConcept C77553402 @default.
- W3185152180 hasConcept C80899671 @default.
- W3185152180 hasConceptScore W3185152180C114614502 @default.
- W3185152180 hasConceptScore W3185152180C118615104 @default.
- W3185152180 hasConceptScore W3185152180C122818955 @default.
- W3185152180 hasConceptScore W3185152180C132525143 @default.
- W3185152180 hasConceptScore W3185152180C134306372 @default.
- W3185152180 hasConceptScore W3185152180C160446614 @default.
- W3185152180 hasConceptScore W3185152180C33923547 @default.
- W3185152180 hasConceptScore W3185152180C77553402 @default.
- W3185152180 hasConceptScore W3185152180C80899671 @default.
- W3185152180 hasLocation W31851521801 @default.
- W3185152180 hasOpenAccess W3185152180 @default.
- W3185152180 hasPrimaryLocation W31851521801 @default.
- W3185152180 hasRelatedWork W1516953373 @default.
- W3185152180 hasRelatedWork W1635360041 @default.
- W3185152180 hasRelatedWork W1640968304 @default.
- W3185152180 hasRelatedWork W2030100833 @default.
- W3185152180 hasRelatedWork W2069309741 @default.
- W3185152180 hasRelatedWork W2070103376 @default.
- W3185152180 hasRelatedWork W2294699768 @default.
- W3185152180 hasRelatedWork W2401658035 @default.
- W3185152180 hasRelatedWork W2567966754 @default.
- W3185152180 hasRelatedWork W2795101523 @default.
- W3185152180 hasRelatedWork W2939354510 @default.
- W3185152180 hasRelatedWork W2951435501 @default.
- W3185152180 hasRelatedWork W2952962016 @default.
- W3185152180 hasRelatedWork W2963892888 @default.
- W3185152180 hasRelatedWork W3013912866 @default.
- W3185152180 hasRelatedWork W3042953477 @default.
- W3185152180 hasRelatedWork W3098551378 @default.
- W3185152180 hasRelatedWork W3098872868 @default.
- W3185152180 hasRelatedWork W3169533302 @default.
- W3185152180 hasRelatedWork W3197998901 @default.
- W3185152180 isParatext "false" @default.
- W3185152180 isRetracted "false" @default.
- W3185152180 magId "3185152180" @default.
- W3185152180 workType "article" @default.