Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185198338> ?p ?o ?g. }
- W3185198338 endingPage "3890" @default.
- W3185198338 startingPage "3879" @default.
- W3185198338 abstract "Deuterium magnetic resonance spectroscopic imaging (DMRSI) has recently been recognized as a potentially powerful tool for noninvasive imaging of brain energy metabolism and tumor. However, the low sensitivity of DMRSI has significantly limited its utility for both research and clinical applications. This work presents a novel machine learning-based method to address this limitation. The proposed method synergistically integrates physics-based subspace modeling and data-driven deep learning for effective denoising, making high-resolution dynamic DMRSI possible. Specifically, a novel subspace model was used to represent the dynamic DMRSI signals; deep neural networks were trained to capture the low-dimensional manifolds of the spectral and temporal distributions of practical dynamic DMRSI data. The learned subspace and manifold structures were integrated via a regularization formulation to remove measurement noise. Theoretical analysis, computer simulations, and in vivo experiments have been conducted to demonstrate the denoising efficacy of the proposed method which enabled high-resolution imaging capability. The translational potential was demonstrated in tumor-bearing rats, where the Warburg effect associated with cancer metabolism and tumor heterogeneity were successfully captured. The new method may not only provide an effective tool to enhance the sensitivity of DMRSI for basic research and clinical applications but also provide a framework for denoising other spatiospectral data." @default.
- W3185198338 created "2021-08-02" @default.
- W3185198338 creator A5011034776 @default.
- W3185198338 creator A5011214342 @default.
- W3185198338 creator A5012432431 @default.
- W3185198338 creator A5016845827 @default.
- W3185198338 creator A5017541508 @default.
- W3185198338 creator A5038855383 @default.
- W3185198338 creator A5044544424 @default.
- W3185198338 creator A5046728790 @default.
- W3185198338 creator A5081705650 @default.
- W3185198338 creator A5085142676 @default.
- W3185198338 date "2021-12-01" @default.
- W3185198338 modified "2023-10-18" @default.
- W3185198338 title "Machine Learning-Enabled High-Resolution Dynamic Deuterium MR Spectroscopic Imaging" @default.
- W3185198338 cites W1492385991 @default.
- W3185198338 cites W1539262087 @default.
- W3185198338 cites W1823549342 @default.
- W3185198338 cites W1999795676 @default.
- W3185198338 cites W2001939051 @default.
- W3185198338 cites W2027685584 @default.
- W3185198338 cites W2038979894 @default.
- W3185198338 cites W2040141503 @default.
- W3185198338 cites W2068020400 @default.
- W3185198338 cites W2072451938 @default.
- W3185198338 cites W2077305791 @default.
- W3185198338 cites W2083395660 @default.
- W3185198338 cites W2091061172 @default.
- W3185198338 cites W2091967608 @default.
- W3185198338 cites W2094334769 @default.
- W3185198338 cites W2094597486 @default.
- W3185198338 cites W2095495863 @default.
- W3185198338 cites W2097259163 @default.
- W3185198338 cites W2153070503 @default.
- W3185198338 cites W2338760177 @default.
- W3185198338 cites W2349047606 @default.
- W3185198338 cites W2615708158 @default.
- W3185198338 cites W2619307443 @default.
- W3185198338 cites W2747736576 @default.
- W3185198338 cites W2783688633 @default.
- W3185198338 cites W2797196654 @default.
- W3185198338 cites W2805742201 @default.
- W3185198338 cites W2888364243 @default.
- W3185198338 cites W2911290743 @default.
- W3185198338 cites W2918344699 @default.
- W3185198338 cites W2921982517 @default.
- W3185198338 cites W2947590149 @default.
- W3185198338 cites W2963091230 @default.
- W3185198338 cites W29671521 @default.
- W3185198338 cites W2972094198 @default.
- W3185198338 cites W2972243934 @default.
- W3185198338 cites W2994813359 @default.
- W3185198338 cites W2996669975 @default.
- W3185198338 cites W2997000373 @default.
- W3185198338 cites W3001176578 @default.
- W3185198338 cites W3003165048 @default.
- W3185198338 cites W3003764613 @default.
- W3185198338 cites W3049507799 @default.
- W3185198338 cites W3120084493 @default.
- W3185198338 doi "https://doi.org/10.1109/tmi.2021.3101149" @default.
- W3185198338 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34319872" @default.
- W3185198338 hasPublicationYear "2021" @default.
- W3185198338 type Work @default.
- W3185198338 sameAs 3185198338 @default.
- W3185198338 citedByCount "9" @default.
- W3185198338 countsByYear W31851983382021 @default.
- W3185198338 countsByYear W31851983382022 @default.
- W3185198338 countsByYear W31851983382023 @default.
- W3185198338 crossrefType "journal-article" @default.
- W3185198338 hasAuthorship W3185198338A5011034776 @default.
- W3185198338 hasAuthorship W3185198338A5011214342 @default.
- W3185198338 hasAuthorship W3185198338A5012432431 @default.
- W3185198338 hasAuthorship W3185198338A5016845827 @default.
- W3185198338 hasAuthorship W3185198338A5017541508 @default.
- W3185198338 hasAuthorship W3185198338A5038855383 @default.
- W3185198338 hasAuthorship W3185198338A5044544424 @default.
- W3185198338 hasAuthorship W3185198338A5046728790 @default.
- W3185198338 hasAuthorship W3185198338A5081705650 @default.
- W3185198338 hasAuthorship W3185198338A5085142676 @default.
- W3185198338 hasBestOaLocation W31851983382 @default.
- W3185198338 hasConcept C108583219 @default.
- W3185198338 hasConcept C115961682 @default.
- W3185198338 hasConcept C119857082 @default.
- W3185198338 hasConcept C127413603 @default.
- W3185198338 hasConcept C153180895 @default.
- W3185198338 hasConcept C154945302 @default.
- W3185198338 hasConcept C163294075 @default.
- W3185198338 hasConcept C21200559 @default.
- W3185198338 hasConcept C24326235 @default.
- W3185198338 hasConcept C2776135515 @default.
- W3185198338 hasConcept C2777121530 @default.
- W3185198338 hasConcept C32834561 @default.
- W3185198338 hasConcept C41008148 @default.
- W3185198338 hasConcept C70518039 @default.
- W3185198338 hasConcept C99498987 @default.
- W3185198338 hasConceptScore W3185198338C108583219 @default.
- W3185198338 hasConceptScore W3185198338C115961682 @default.
- W3185198338 hasConceptScore W3185198338C119857082 @default.