Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185250638> ?p ?o ?g. }
- W3185250638 abstract "Abstract Three-point bending fatigue compliance datasets of multi-layer fiberglass-weave/epoxy test specimens, including 5 and 10 mil interlayers, were analyzed using artificial intelligence (AI) methods along with statistical analysis, revealing the existence of three different compliance-based damage modes. Anomaly detection algorithms helped discover damage indicators observable in short intervals (of 50 cycles) in the compliance data, whose patterns vary with the material and the number of load cycles to which the material is subjected. Machine learning algorithms were applied using the compliance features to assess the likelihood that material failure may occur within a certain number of future loading cycles. High accuracy, precision, and recall rates were achieved in the classification task, for which we evaluated several algorithms, including various variations of neural networks and support vector machines. Thus, our work demonstrates the utility of AI algorithms for discovering a diversity of damage mechanisms and failures." @default.
- W3185250638 created "2021-08-02" @default.
- W3185250638 creator A5037076982 @default.
- W3185250638 creator A5045841994 @default.
- W3185250638 creator A5051923415 @default.
- W3185250638 creator A5084498067 @default.
- W3185250638 date "2021-08-11" @default.
- W3185250638 modified "2023-09-24" @default.
- W3185250638 title "Machine Learning and Anomaly Detection Algorithms for Damage Characterization From Compliance Data in Three-Point Bending Fatigue" @default.
- W3185250638 cites W2064675550 @default.
- W3185250638 cites W2093090592 @default.
- W3185250638 cites W210515905 @default.
- W3185250638 cites W2313444364 @default.
- W3185250638 cites W2556345765 @default.
- W3185250638 cites W2598457882 @default.
- W3185250638 cites W2611569523 @default.
- W3185250638 cites W2767522444 @default.
- W3185250638 cites W2791957585 @default.
- W3185250638 cites W2800846548 @default.
- W3185250638 cites W2898069542 @default.
- W3185250638 cites W2950330191 @default.
- W3185250638 cites W2972652036 @default.
- W3185250638 cites W2978429941 @default.
- W3185250638 cites W2984071241 @default.
- W3185250638 cites W2984416365 @default.
- W3185250638 cites W2991450566 @default.
- W3185250638 cites W2997308049 @default.
- W3185250638 cites W3014570380 @default.
- W3185250638 cites W3031421697 @default.
- W3185250638 cites W3034047833 @default.
- W3185250638 cites W3041440607 @default.
- W3185250638 cites W3046970727 @default.
- W3185250638 cites W3081947936 @default.
- W3185250638 cites W3084614174 @default.
- W3185250638 cites W3098340457 @default.
- W3185250638 cites W3112057116 @default.
- W3185250638 cites W3118579064 @default.
- W3185250638 cites W3128775465 @default.
- W3185250638 cites W3135999519 @default.
- W3185250638 cites W3137701825 @default.
- W3185250638 cites W3153932301 @default.
- W3185250638 cites W3154143855 @default.
- W3185250638 cites W3155559117 @default.
- W3185250638 cites W3159137010 @default.
- W3185250638 cites W3173041499 @default.
- W3185250638 cites W3173312377 @default.
- W3185250638 doi "https://doi.org/10.1115/1.4051903" @default.
- W3185250638 hasPublicationYear "2021" @default.
- W3185250638 type Work @default.
- W3185250638 sameAs 3185250638 @default.
- W3185250638 citedByCount "0" @default.
- W3185250638 crossrefType "journal-article" @default.
- W3185250638 hasAuthorship W3185250638A5037076982 @default.
- W3185250638 hasAuthorship W3185250638A5045841994 @default.
- W3185250638 hasAuthorship W3185250638A5051923415 @default.
- W3185250638 hasAuthorship W3185250638A5084498067 @default.
- W3185250638 hasConcept C11413529 @default.
- W3185250638 hasConcept C119857082 @default.
- W3185250638 hasConcept C12267149 @default.
- W3185250638 hasConcept C124101348 @default.
- W3185250638 hasConcept C127413603 @default.
- W3185250638 hasConcept C154945302 @default.
- W3185250638 hasConcept C201995342 @default.
- W3185250638 hasConcept C2524010 @default.
- W3185250638 hasConcept C2780451532 @default.
- W3185250638 hasConcept C28719098 @default.
- W3185250638 hasConcept C33923547 @default.
- W3185250638 hasConcept C41008148 @default.
- W3185250638 hasConcept C50644808 @default.
- W3185250638 hasConcept C66938386 @default.
- W3185250638 hasConcept C739882 @default.
- W3185250638 hasConcept C87210426 @default.
- W3185250638 hasConceptScore W3185250638C11413529 @default.
- W3185250638 hasConceptScore W3185250638C119857082 @default.
- W3185250638 hasConceptScore W3185250638C12267149 @default.
- W3185250638 hasConceptScore W3185250638C124101348 @default.
- W3185250638 hasConceptScore W3185250638C127413603 @default.
- W3185250638 hasConceptScore W3185250638C154945302 @default.
- W3185250638 hasConceptScore W3185250638C201995342 @default.
- W3185250638 hasConceptScore W3185250638C2524010 @default.
- W3185250638 hasConceptScore W3185250638C2780451532 @default.
- W3185250638 hasConceptScore W3185250638C28719098 @default.
- W3185250638 hasConceptScore W3185250638C33923547 @default.
- W3185250638 hasConceptScore W3185250638C41008148 @default.
- W3185250638 hasConceptScore W3185250638C50644808 @default.
- W3185250638 hasConceptScore W3185250638C66938386 @default.
- W3185250638 hasConceptScore W3185250638C739882 @default.
- W3185250638 hasConceptScore W3185250638C87210426 @default.
- W3185250638 hasFunder F4320338295 @default.
- W3185250638 hasIssue "4" @default.
- W3185250638 hasLocation W31852506381 @default.
- W3185250638 hasOpenAccess W3185250638 @default.
- W3185250638 hasPrimaryLocation W31852506381 @default.
- W3185250638 hasRelatedWork W1987859285 @default.
- W3185250638 hasRelatedWork W2101819884 @default.
- W3185250638 hasRelatedWork W2539163683 @default.
- W3185250638 hasRelatedWork W2779764073 @default.
- W3185250638 hasRelatedWork W2803710604 @default.
- W3185250638 hasRelatedWork W2982170967 @default.
- W3185250638 hasRelatedWork W3136979370 @default.