Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185266526> ?p ?o ?g. }
- W3185266526 endingPage "117417" @default.
- W3185266526 startingPage "117417" @default.
- W3185266526 abstract "• A cryogenic thermal energy storage is investigated for a LAES system. • Phase change material as a novel cold storage medium is discussed. • Phase change material packed bed trough experimental facility constructed. • Thermal buffer phenomena in PCM thermal energy storage is highlighted as a key issue. • PCM integration decreases LAES specific consumption by 17% with a pay-back period inferior to 3 years. Electrical energy storage represents a necessary link between sustainability goals and the enhancement of intermittent renewable energy sources penetration in electricity grids. Liquid air energy storage (LAES) is a promising large scale thermo-mechanical energy storage system whose round trip efficiency is largely affected by the performance of the sub-thermal energy storages. The high grade cold storage (HGCS) is by far the most important due to the crucial thermodynamic recovery of the waste cold stream released by the liquid air regasification process. LAES pilot plant and pre-commercial demonstrator, as well as the vast majority of the theoretical and experimental analysis found in literature studies, currently design to store that exergetically valuable cold source in sensible heat (SH) thermal energy storage, economically efficient but low energy density solution. Conversely, phase change material (PCM) has the potential to store a larger amount of energy using the same amount of storage volume. The objective of the present work is to numerically and experimentally investigate the thermal behaviour of a novel cryogenic HGCS packed bed filled by PCM and determine how the novelty introduced affects the LAES thermodynamic and economic performance compared to the SH configuration. To this end, a simplified transient one-dimensional numerical model to simulate the charging and discharging phase of the HGCS system has been developed and successfully validated against experimental results provided by literature for SH medium and an experimental campaign carried out on a novel lab scale HGCS at TESLAB@NTU for PCM, representing a unicum in literature for both PCM and LAES applications. The numerical results have shown that the introduction of a PCM in the HGCS mitigates the thermocline effect shown in SH configuration ensuring: a) longer discharge phase by means of the thermal buffer phenomena triggered by the phase change process and b) lower specific consumption compared to SH configuration (0.272 vs 0.330 kWhe/kgLA) due to a lower time average outlet temperature of the heat transfer fluid during the HGCS discharge, corresponding to LAES charge phase. From an economic perspective, the decrease of the time average specific consumptions results in a notable payback period inferior to 3 years, making the economic investment considerably attractive." @default.
- W3185266526 created "2021-08-02" @default.
- W3185266526 creator A5014470440 @default.
- W3185266526 creator A5051494978 @default.
- W3185266526 creator A5066181211 @default.
- W3185266526 creator A5074889806 @default.
- W3185266526 date "2021-11-01" @default.
- W3185266526 modified "2023-10-03" @default.
- W3185266526 title "Innovative cryogenic Phase Change Material (PCM) based cold thermal energy storage for Liquid Air Energy Storage (LAES) – Numerical dynamic modelling and experimental study of a packed bed unit" @default.
- W3185266526 cites W1583339472 @default.
- W3185266526 cites W16227374 @default.
- W3185266526 cites W1869082676 @default.
- W3185266526 cites W1968072039 @default.
- W3185266526 cites W1979536427 @default.
- W3185266526 cites W1994242781 @default.
- W3185266526 cites W2017428530 @default.
- W3185266526 cites W2025741626 @default.
- W3185266526 cites W2032788290 @default.
- W3185266526 cites W2043261580 @default.
- W3185266526 cites W2049672594 @default.
- W3185266526 cites W2073523534 @default.
- W3185266526 cites W2077850815 @default.
- W3185266526 cites W2086566641 @default.
- W3185266526 cites W2090129893 @default.
- W3185266526 cites W2091066087 @default.
- W3185266526 cites W2192780982 @default.
- W3185266526 cites W2529239358 @default.
- W3185266526 cites W2570670269 @default.
- W3185266526 cites W2605622626 @default.
- W3185266526 cites W2620848063 @default.
- W3185266526 cites W2689687103 @default.
- W3185266526 cites W2788595811 @default.
- W3185266526 cites W2800039138 @default.
- W3185266526 cites W2810880100 @default.
- W3185266526 cites W2884443698 @default.
- W3185266526 cites W2915482315 @default.
- W3185266526 cites W2921991260 @default.
- W3185266526 cites W2947156488 @default.
- W3185266526 cites W3006764216 @default.
- W3185266526 cites W3017124177 @default.
- W3185266526 cites W3038832964 @default.
- W3185266526 cites W3038951709 @default.
- W3185266526 cites W3089723162 @default.
- W3185266526 cites W3094231167 @default.
- W3185266526 cites W3110670875 @default.
- W3185266526 cites W3121365558 @default.
- W3185266526 doi "https://doi.org/10.1016/j.apenergy.2021.117417" @default.
- W3185266526 hasPublicationYear "2021" @default.
- W3185266526 type Work @default.
- W3185266526 sameAs 3185266526 @default.
- W3185266526 citedByCount "35" @default.
- W3185266526 countsByYear W31852665262022 @default.
- W3185266526 countsByYear W31852665262023 @default.
- W3185266526 crossrefType "journal-article" @default.
- W3185266526 hasAuthorship W3185266526A5014470440 @default.
- W3185266526 hasAuthorship W3185266526A5051494978 @default.
- W3185266526 hasAuthorship W3185266526A5066181211 @default.
- W3185266526 hasAuthorship W3185266526A5074889806 @default.
- W3185266526 hasConcept C116915560 @default.
- W3185266526 hasConcept C121332964 @default.
- W3185266526 hasConcept C122637931 @default.
- W3185266526 hasConcept C127413603 @default.
- W3185266526 hasConcept C133256868 @default.
- W3185266526 hasConcept C144027150 @default.
- W3185266526 hasConcept C145420912 @default.
- W3185266526 hasConcept C163258240 @default.
- W3185266526 hasConcept C183287310 @default.
- W3185266526 hasConcept C192562407 @default.
- W3185266526 hasConcept C204530211 @default.
- W3185266526 hasConcept C21880701 @default.
- W3185266526 hasConcept C2778119658 @default.
- W3185266526 hasConcept C2988529969 @default.
- W3185266526 hasConcept C33923547 @default.
- W3185266526 hasConcept C39432304 @default.
- W3185266526 hasConcept C548081761 @default.
- W3185266526 hasConcept C61696701 @default.
- W3185266526 hasConcept C73916439 @default.
- W3185266526 hasConcept C86803240 @default.
- W3185266526 hasConcept C97355855 @default.
- W3185266526 hasConceptScore W3185266526C116915560 @default.
- W3185266526 hasConceptScore W3185266526C121332964 @default.
- W3185266526 hasConceptScore W3185266526C122637931 @default.
- W3185266526 hasConceptScore W3185266526C127413603 @default.
- W3185266526 hasConceptScore W3185266526C133256868 @default.
- W3185266526 hasConceptScore W3185266526C144027150 @default.
- W3185266526 hasConceptScore W3185266526C145420912 @default.
- W3185266526 hasConceptScore W3185266526C163258240 @default.
- W3185266526 hasConceptScore W3185266526C183287310 @default.
- W3185266526 hasConceptScore W3185266526C192562407 @default.
- W3185266526 hasConceptScore W3185266526C204530211 @default.
- W3185266526 hasConceptScore W3185266526C21880701 @default.
- W3185266526 hasConceptScore W3185266526C2778119658 @default.
- W3185266526 hasConceptScore W3185266526C2988529969 @default.
- W3185266526 hasConceptScore W3185266526C33923547 @default.
- W3185266526 hasConceptScore W3185266526C39432304 @default.
- W3185266526 hasConceptScore W3185266526C548081761 @default.
- W3185266526 hasConceptScore W3185266526C61696701 @default.
- W3185266526 hasConceptScore W3185266526C73916439 @default.