Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185374219> ?p ?o ?g. }
- W3185374219 endingPage "21049" @default.
- W3185374219 startingPage "21038" @default.
- W3185374219 abstract "Electrical capacitance tomography is employed for various process tomography applications, typically with circular imaging regions (e.g., to estimate fluid levels in plastic pipes). Typical state-of-the-art implementations focus on circular or cylindrical sensor arrays. In contrast, this research explores using a planar 2D array of electric-field sensors to image volumes composed of various dielectric materials. The array is designed to be used with very-low-frequency electric fields, which are desirable due to their ability to differentiate between various non-conducting objects. D-dot sensors (i.e., charge induction sensors) are used as the electric-field sensing element. In this research, imaging regions of interest are modeled as a composition of (25 cm) <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>3</sup> voxels of dielectric material with randomized relative permittivities. Neural networks are utilized as the inversion algorithm to map measured E-field distortions to the voxels’ relative permittivities. Three applications are explored in a simulated environment: 1) predicting relative permittivities of the entire (pseudo-3D) imaging region from one measurement of electric-field distortions (modeled in free space), 2) imaging regions arbitrarily large (in two dimensions) using the planar array as an imaging kernel, and 3) repeating application (1) in a model of a practical, real-world imaging scenario both with and without interfering material. Application (3) is performed with a real-world experimental setup using a room-sized “E-field Cage” meant to generate a uniform electric field. This work showcases a new electric-field imaging modality using a planar 2D D-dot sensor array paired with a DNN-based inversion algorithm." @default.
- W3185374219 created "2021-08-02" @default.
- W3185374219 creator A5008436375 @default.
- W3185374219 creator A5026885599 @default.
- W3185374219 creator A5070264979 @default.
- W3185374219 creator A5078103916 @default.
- W3185374219 creator A5083291199 @default.
- W3185374219 date "2021-09-15" @default.
- W3185374219 modified "2023-09-30" @default.
- W3185374219 title "Planar Near-Field Electric Field Sensor Array Applications Facilitated by Neural Networks" @default.
- W3185374219 cites W1982175150 @default.
- W3185374219 cites W2005836623 @default.
- W3185374219 cites W2034978228 @default.
- W3185374219 cites W2049772201 @default.
- W3185374219 cites W2055625615 @default.
- W3185374219 cites W2090395654 @default.
- W3185374219 cites W2102838944 @default.
- W3185374219 cites W2104627733 @default.
- W3185374219 cites W2106050534 @default.
- W3185374219 cites W2108863971 @default.
- W3185374219 cites W2165698076 @default.
- W3185374219 cites W2334238812 @default.
- W3185374219 cites W2753121351 @default.
- W3185374219 cites W2755811822 @default.
- W3185374219 cites W2794183899 @default.
- W3185374219 cites W2804478515 @default.
- W3185374219 cites W2887280559 @default.
- W3185374219 cites W2904689504 @default.
- W3185374219 cites W2990952129 @default.
- W3185374219 cites W2997407862 @default.
- W3185374219 cites W2998812258 @default.
- W3185374219 cites W2999762823 @default.
- W3185374219 cites W3094038192 @default.
- W3185374219 cites W631860313 @default.
- W3185374219 doi "https://doi.org/10.1109/jsen.2021.3099984" @default.
- W3185374219 hasPublicationYear "2021" @default.
- W3185374219 type Work @default.
- W3185374219 sameAs 3185374219 @default.
- W3185374219 citedByCount "1" @default.
- W3185374219 countsByYear W31853742192022 @default.
- W3185374219 crossrefType "journal-article" @default.
- W3185374219 hasAuthorship W3185374219A5008436375 @default.
- W3185374219 hasAuthorship W3185374219A5026885599 @default.
- W3185374219 hasAuthorship W3185374219A5070264979 @default.
- W3185374219 hasAuthorship W3185374219A5078103916 @default.
- W3185374219 hasAuthorship W3185374219A5083291199 @default.
- W3185374219 hasConcept C120665830 @default.
- W3185374219 hasConcept C121332964 @default.
- W3185374219 hasConcept C121684516 @default.
- W3185374219 hasConcept C133386390 @default.
- W3185374219 hasConcept C134786449 @default.
- W3185374219 hasConcept C141379421 @default.
- W3185374219 hasConcept C154945302 @default.
- W3185374219 hasConcept C163716698 @default.
- W3185374219 hasConcept C17525397 @default.
- W3185374219 hasConcept C202444582 @default.
- W3185374219 hasConcept C2775980084 @default.
- W3185374219 hasConcept C2777418626 @default.
- W3185374219 hasConcept C30066665 @default.
- W3185374219 hasConcept C33923547 @default.
- W3185374219 hasConcept C41008148 @default.
- W3185374219 hasConcept C49040817 @default.
- W3185374219 hasConcept C54170458 @default.
- W3185374219 hasConcept C60799052 @default.
- W3185374219 hasConcept C62520636 @default.
- W3185374219 hasConcept C9652623 @default.
- W3185374219 hasConceptScore W3185374219C120665830 @default.
- W3185374219 hasConceptScore W3185374219C121332964 @default.
- W3185374219 hasConceptScore W3185374219C121684516 @default.
- W3185374219 hasConceptScore W3185374219C133386390 @default.
- W3185374219 hasConceptScore W3185374219C134786449 @default.
- W3185374219 hasConceptScore W3185374219C141379421 @default.
- W3185374219 hasConceptScore W3185374219C154945302 @default.
- W3185374219 hasConceptScore W3185374219C163716698 @default.
- W3185374219 hasConceptScore W3185374219C17525397 @default.
- W3185374219 hasConceptScore W3185374219C202444582 @default.
- W3185374219 hasConceptScore W3185374219C2775980084 @default.
- W3185374219 hasConceptScore W3185374219C2777418626 @default.
- W3185374219 hasConceptScore W3185374219C30066665 @default.
- W3185374219 hasConceptScore W3185374219C33923547 @default.
- W3185374219 hasConceptScore W3185374219C41008148 @default.
- W3185374219 hasConceptScore W3185374219C49040817 @default.
- W3185374219 hasConceptScore W3185374219C54170458 @default.
- W3185374219 hasConceptScore W3185374219C60799052 @default.
- W3185374219 hasConceptScore W3185374219C62520636 @default.
- W3185374219 hasConceptScore W3185374219C9652623 @default.
- W3185374219 hasFunder F4320338295 @default.
- W3185374219 hasIssue "18" @default.
- W3185374219 hasLocation W31853742191 @default.
- W3185374219 hasOpenAccess W3185374219 @default.
- W3185374219 hasPrimaryLocation W31853742191 @default.
- W3185374219 hasRelatedWork W2012219282 @default.
- W3185374219 hasRelatedWork W2087961562 @default.
- W3185374219 hasRelatedWork W2093405456 @default.
- W3185374219 hasRelatedWork W2170544729 @default.
- W3185374219 hasRelatedWork W2356922961 @default.
- W3185374219 hasRelatedWork W2387617974 @default.
- W3185374219 hasRelatedWork W2554162891 @default.