Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185377372> ?p ?o ?g. }
- W3185377372 endingPage "707" @default.
- W3185377372 startingPage "707" @default.
- W3185377372 abstract "Crop production can be greatly reduced due to various diseases, which seriously endangers food security. Thus, detecting plant diseases accurately is necessary and urgent. Traditional classification methods, such as naked-eye observation and laboratory tests, have many limitations, such as being time consuming and subjective. Currently, deep learning (DL) methods, especially those based on convolutional neural network (CNN), have gained widespread application in plant disease classification. They have solved or partially solved the problems of traditional classification methods and represent state-of-the-art technology in this field. In this work, we reviewed the latest CNN networks pertinent to plant leaf disease classification. We summarized DL principles involved in plant disease classification. Additionally, we summarized the main problems and corresponding solutions of CNN used for plant disease classification. Furthermore, we discussed the future development direction in plant disease classification." @default.
- W3185377372 created "2021-08-02" @default.
- W3185377372 creator A5057315354 @default.
- W3185377372 creator A5077083047 @default.
- W3185377372 creator A5089481671 @default.
- W3185377372 date "2021-07-27" @default.
- W3185377372 modified "2023-10-11" @default.
- W3185377372 title "Review on Convolutional Neural Network (CNN) Applied to Plant Leaf Disease Classification" @default.
- W3185377372 cites W1982141954 @default.
- W3185377372 cites W2003007706 @default.
- W3185377372 cites W2006274653 @default.
- W3185377372 cites W2013568903 @default.
- W3185377372 cites W2013753727 @default.
- W3185377372 cites W2014408679 @default.
- W3185377372 cites W2043286967 @default.
- W3185377372 cites W2091150241 @default.
- W3185377372 cites W2107878631 @default.
- W3185377372 cites W2162772680 @default.
- W3185377372 cites W2277854822 @default.
- W3185377372 cites W2473156356 @default.
- W3185377372 cites W2504081689 @default.
- W3185377372 cites W2520364485 @default.
- W3185377372 cites W2521803624 @default.
- W3185377372 cites W2579348194 @default.
- W3185377372 cites W2604086375 @default.
- W3185377372 cites W2614850301 @default.
- W3185377372 cites W2618530766 @default.
- W3185377372 cites W2753403518 @default.
- W3185377372 cites W2776705292 @default.
- W3185377372 cites W2789255992 @default.
- W3185377372 cites W2793404847 @default.
- W3185377372 cites W2795016359 @default.
- W3185377372 cites W2808709127 @default.
- W3185377372 cites W2869138134 @default.
- W3185377372 cites W2888956734 @default.
- W3185377372 cites W2889862370 @default.
- W3185377372 cites W2891667148 @default.
- W3185377372 cites W2899230946 @default.
- W3185377372 cites W2911433502 @default.
- W3185377372 cites W2912634210 @default.
- W3185377372 cites W2915011392 @default.
- W3185377372 cites W2921403460 @default.
- W3185377372 cites W2938959907 @default.
- W3185377372 cites W2943036395 @default.
- W3185377372 cites W2946016983 @default.
- W3185377372 cites W2954826145 @default.
- W3185377372 cites W2956483768 @default.
- W3185377372 cites W2962949934 @default.
- W3185377372 cites W2963820222 @default.
- W3185377372 cites W2965710437 @default.
- W3185377372 cites W2966160658 @default.
- W3185377372 cites W2966533690 @default.
- W3185377372 cites W2970226366 @default.
- W3185377372 cites W2983575492 @default.
- W3185377372 cites W2987252287 @default.
- W3185377372 cites W2990421845 @default.
- W3185377372 cites W3004876557 @default.
- W3185377372 cites W3010677011 @default.
- W3185377372 cites W3014379759 @default.
- W3185377372 cites W3015562698 @default.
- W3185377372 cites W3017142502 @default.
- W3185377372 cites W3032025624 @default.
- W3185377372 cites W3033000587 @default.
- W3185377372 cites W3035982802 @default.
- W3185377372 cites W3042909640 @default.
- W3185377372 cites W3087425959 @default.
- W3185377372 cites W3093956116 @default.
- W3185377372 cites W3100931193 @default.
- W3185377372 cites W3101024233 @default.
- W3185377372 cites W3119027282 @default.
- W3185377372 cites W3119228887 @default.
- W3185377372 cites W3126813237 @default.
- W3185377372 cites W3128923900 @default.
- W3185377372 cites W3132571889 @default.
- W3185377372 cites W3136223851 @default.
- W3185377372 cites W3171843713 @default.
- W3185377372 cites W3172129612 @default.
- W3185377372 cites W3173170759 @default.
- W3185377372 cites W3173478554 @default.
- W3185377372 cites W3175496851 @default.
- W3185377372 cites W4205947740 @default.
- W3185377372 doi "https://doi.org/10.3390/agriculture11080707" @default.
- W3185377372 hasPublicationYear "2021" @default.
- W3185377372 type Work @default.
- W3185377372 sameAs 3185377372 @default.
- W3185377372 citedByCount "102" @default.
- W3185377372 countsByYear W31853773722021 @default.
- W3185377372 countsByYear W31853773722022 @default.
- W3185377372 countsByYear W31853773722023 @default.
- W3185377372 crossrefType "journal-article" @default.
- W3185377372 hasAuthorship W3185377372A5057315354 @default.
- W3185377372 hasAuthorship W3185377372A5077083047 @default.
- W3185377372 hasAuthorship W3185377372A5089481671 @default.
- W3185377372 hasBestOaLocation W31853773721 @default.
- W3185377372 hasConcept C108583219 @default.
- W3185377372 hasConcept C115961682 @default.
- W3185377372 hasConcept C119857082 @default.
- W3185377372 hasConcept C150903083 @default.