Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185396539> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3185396539 abstract "We consider the algorithmic question of choosing a subset of candidates of a given size $k$ from a set of $m$ candidates, with knowledge of voters' ordinal rankings over all candidates. We consider the well-known and classic scoring rule for achieving diverse representation: the Chamberlin-Courant (CC) or $1$-Borda rule, where the score of a committee is the average over the voters, of the rank of the best candidate in the committee for that voter; and its generalization to the average of the top $s$ best candidates, called the $s$-Borda rule. Our first result is an improved analysis of the natural and well-studied greedy heuristic. We show that greedy achieves a $left(1 - frac{2}{k+1}right)$-approximation to the maximization (or satisfaction) version of CC rule, and a $left(1 - frac{2s}{k+1}right)$-approximation to the $s$-Borda score. Our result improves on the best known approximation algorithm for this problem. We show that these bounds are almost tight. For the dissatisfaction (or minimization) version of the problem, we show that the score of $frac{m+1}{k+1}$ can be viewed as an optimal benchmark for the CC rule, as it is essentially the best achievable score of any polynomial-time algorithm even when the optimal score is a polynomial factor smaller (under standard computational complexity assumptions). We show that another well-studied algorithm for this problem, called the Banzhaf rule, attains this benchmark. We finally show that for the $s$-Borda rule, when the optimal value is small, these algorithms can be improved by a factor of $tilde Omega(sqrt{s})$ via LP rounding. Our upper and lower bounds are a significant improvement over previous results, and taken together, not only enable us to perform a finer comparison of greedy algorithms for these problems, but also provide analytic justification for using such algorithms in practice." @default.
- W3185396539 created "2021-08-02" @default.
- W3185396539 creator A5011645598 @default.
- W3185396539 creator A5047351951 @default.
- W3185396539 creator A5069532378 @default.
- W3185396539 date "2021-01-01" @default.
- W3185396539 modified "2023-09-27" @default.
- W3185396539 title "Optimal Algorithms for Multiwinner Elections and the Chamberlin-Courant Rule" @default.
- W3185396539 hasPublicationYear "2021" @default.
- W3185396539 type Work @default.
- W3185396539 sameAs 3185396539 @default.
- W3185396539 citedByCount "0" @default.
- W3185396539 crossrefType "posted-content" @default.
- W3185396539 hasAuthorship W3185396539A5011645598 @default.
- W3185396539 hasAuthorship W3185396539A5047351951 @default.
- W3185396539 hasAuthorship W3185396539A5069532378 @default.
- W3185396539 hasConcept C105795698 @default.
- W3185396539 hasConcept C11413529 @default.
- W3185396539 hasConcept C114614502 @default.
- W3185396539 hasConcept C118615104 @default.
- W3185396539 hasConcept C126255220 @default.
- W3185396539 hasConcept C13280743 @default.
- W3185396539 hasConcept C134306372 @default.
- W3185396539 hasConcept C148764684 @default.
- W3185396539 hasConcept C164226766 @default.
- W3185396539 hasConcept C173801870 @default.
- W3185396539 hasConcept C177148314 @default.
- W3185396539 hasConcept C185798385 @default.
- W3185396539 hasConcept C205649164 @default.
- W3185396539 hasConcept C2776330181 @default.
- W3185396539 hasConcept C311688 @default.
- W3185396539 hasConcept C33923547 @default.
- W3185396539 hasConcept C51823790 @default.
- W3185396539 hasConcept C63002673 @default.
- W3185396539 hasConceptScore W3185396539C105795698 @default.
- W3185396539 hasConceptScore W3185396539C11413529 @default.
- W3185396539 hasConceptScore W3185396539C114614502 @default.
- W3185396539 hasConceptScore W3185396539C118615104 @default.
- W3185396539 hasConceptScore W3185396539C126255220 @default.
- W3185396539 hasConceptScore W3185396539C13280743 @default.
- W3185396539 hasConceptScore W3185396539C134306372 @default.
- W3185396539 hasConceptScore W3185396539C148764684 @default.
- W3185396539 hasConceptScore W3185396539C164226766 @default.
- W3185396539 hasConceptScore W3185396539C173801870 @default.
- W3185396539 hasConceptScore W3185396539C177148314 @default.
- W3185396539 hasConceptScore W3185396539C185798385 @default.
- W3185396539 hasConceptScore W3185396539C205649164 @default.
- W3185396539 hasConceptScore W3185396539C2776330181 @default.
- W3185396539 hasConceptScore W3185396539C311688 @default.
- W3185396539 hasConceptScore W3185396539C33923547 @default.
- W3185396539 hasConceptScore W3185396539C51823790 @default.
- W3185396539 hasConceptScore W3185396539C63002673 @default.
- W3185396539 hasLocation W31853965391 @default.
- W3185396539 hasOpenAccess W3185396539 @default.
- W3185396539 hasPrimaryLocation W31853965391 @default.
- W3185396539 hasRelatedWork W1990453016 @default.
- W3185396539 hasRelatedWork W2011730242 @default.
- W3185396539 hasRelatedWork W2024298276 @default.
- W3185396539 hasRelatedWork W2050660892 @default.
- W3185396539 hasRelatedWork W2107560177 @default.
- W3185396539 hasRelatedWork W2134297689 @default.
- W3185396539 hasRelatedWork W2140560120 @default.
- W3185396539 hasRelatedWork W2183889313 @default.
- W3185396539 hasRelatedWork W2267038477 @default.
- W3185396539 hasRelatedWork W2405476433 @default.
- W3185396539 hasRelatedWork W2436337942 @default.
- W3185396539 hasRelatedWork W2487240329 @default.
- W3185396539 hasRelatedWork W2728346207 @default.
- W3185396539 hasRelatedWork W2950644037 @default.
- W3185396539 hasRelatedWork W2964305024 @default.
- W3185396539 hasRelatedWork W3126500355 @default.
- W3185396539 hasRelatedWork W3177731160 @default.
- W3185396539 hasRelatedWork W3211519965 @default.
- W3185396539 hasRelatedWork W3213206291 @default.
- W3185396539 hasRelatedWork W2152887173 @default.
- W3185396539 isParatext "false" @default.
- W3185396539 isRetracted "false" @default.
- W3185396539 magId "3185396539" @default.
- W3185396539 workType "article" @default.