Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185453709> ?p ?o ?g. }
- W3185453709 endingPage "10" @default.
- W3185453709 startingPage "1" @default.
- W3185453709 abstract "This paper aims to study the fault diagnosis method of the mechanical hydraulic system based on artificial intelligence dynamic monitoring. According to the characteristics of functional principal component analysis (FPCA) and neural network in the fault diagnosis method in the feature extraction process, the fault diagnosis method combining functional principal component analysis and BP neural network is studied and it is applied to the fault of the coordinator hydraulic system diagnosis. This article mainly completed the following tasks: analyzing the structure and working principle of the mechanical hydraulic system, studying the failure mechanism and failure mode of the mechanical hydraulic system, summarizing the common failures of the hydraulic system and the individual failures of the mechanical hydraulic system, and establishing the mechanical hydraulic system. Description of failure mode and effects analysis (FMEA): then, a joint simulation model of the mechanical hydraulic system was established in ADAMS and AMESim, and the fault detection signal of the hydraulic system was determined and compared with the experimental data. At the same time, the simulation data of the cosimulation model were compared with the simulation data of the hydraulic model in MATLAB to further verify the correctness of the model. The functional principal component analysis is used to perform functional processing on sample data, feature parameters are extracted, and the BP neural network is used to train the mapping relationship between feature parameters and fault parameters. The consistency is verified, and the fault diagnosis method is finally completed. The experimental results show that the diagnostic accuracy rates are 0.9848 and 0.9927, respectively, the reliability is significantly improved, close to 100%, and the uncertainty is basically 0, which significantly improves the accuracy of fault diagnosis." @default.
- W3185453709 created "2021-08-02" @default.
- W3185453709 creator A5054031217 @default.
- W3185453709 creator A5069763485 @default.
- W3185453709 date "2021-07-15" @default.
- W3185453709 modified "2023-09-24" @default.
- W3185453709 title "Fault Diagnosis Method of the Construction Machinery Hydraulic System Based on Artificial Intelligence Dynamic Monitoring" @default.
- W3185453709 cites W1035825731 @default.
- W3185453709 cites W1551050533 @default.
- W3185453709 cites W1800280049 @default.
- W3185453709 cites W1876709426 @default.
- W3185453709 cites W2007310460 @default.
- W3185453709 cites W2041490648 @default.
- W3185453709 cites W2075424814 @default.
- W3185453709 cites W2134754119 @default.
- W3185453709 cites W2232613375 @default.
- W3185453709 cites W2271914738 @default.
- W3185453709 cites W2310685254 @default.
- W3185453709 cites W2320648065 @default.
- W3185453709 cites W2397107899 @default.
- W3185453709 cites W2480393815 @default.
- W3185453709 cites W2526355008 @default.
- W3185453709 cites W2529693955 @default.
- W3185453709 cites W2530917347 @default.
- W3185453709 cites W2563222081 @default.
- W3185453709 cites W2570973170 @default.
- W3185453709 cites W2614048634 @default.
- W3185453709 cites W2751758678 @default.
- W3185453709 cites W2766846498 @default.
- W3185453709 cites W2787225861 @default.
- W3185453709 cites W2796101516 @default.
- W3185453709 cites W2992747113 @default.
- W3185453709 doi "https://doi.org/10.1155/2021/1093960" @default.
- W3185453709 hasPublicationYear "2021" @default.
- W3185453709 type Work @default.
- W3185453709 sameAs 3185453709 @default.
- W3185453709 citedByCount "2" @default.
- W3185453709 countsByYear W31854537092023 @default.
- W3185453709 crossrefType "journal-article" @default.
- W3185453709 hasAuthorship W3185453709A5054031217 @default.
- W3185453709 hasAuthorship W3185453709A5069763485 @default.
- W3185453709 hasBestOaLocation W31854537091 @default.
- W3185453709 hasConcept C111919701 @default.
- W3185453709 hasConcept C11394606 @default.
- W3185453709 hasConcept C11413529 @default.
- W3185453709 hasConcept C121332964 @default.
- W3185453709 hasConcept C124101348 @default.
- W3185453709 hasConcept C127313418 @default.
- W3185453709 hasConcept C127413603 @default.
- W3185453709 hasConcept C133731056 @default.
- W3185453709 hasConcept C138885662 @default.
- W3185453709 hasConcept C153180895 @default.
- W3185453709 hasConcept C154945302 @default.
- W3185453709 hasConcept C165205528 @default.
- W3185453709 hasConcept C168167062 @default.
- W3185453709 hasConcept C171912257 @default.
- W3185453709 hasConcept C175551986 @default.
- W3185453709 hasConcept C200601418 @default.
- W3185453709 hasConcept C27438332 @default.
- W3185453709 hasConcept C2776401178 @default.
- W3185453709 hasConcept C2776436953 @default.
- W3185453709 hasConcept C2780365114 @default.
- W3185453709 hasConcept C41008148 @default.
- W3185453709 hasConcept C41895202 @default.
- W3185453709 hasConcept C50644808 @default.
- W3185453709 hasConcept C52622490 @default.
- W3185453709 hasConcept C55439883 @default.
- W3185453709 hasConcept C66283442 @default.
- W3185453709 hasConcept C78519656 @default.
- W3185453709 hasConcept C97355855 @default.
- W3185453709 hasConceptScore W3185453709C111919701 @default.
- W3185453709 hasConceptScore W3185453709C11394606 @default.
- W3185453709 hasConceptScore W3185453709C11413529 @default.
- W3185453709 hasConceptScore W3185453709C121332964 @default.
- W3185453709 hasConceptScore W3185453709C124101348 @default.
- W3185453709 hasConceptScore W3185453709C127313418 @default.
- W3185453709 hasConceptScore W3185453709C127413603 @default.
- W3185453709 hasConceptScore W3185453709C133731056 @default.
- W3185453709 hasConceptScore W3185453709C138885662 @default.
- W3185453709 hasConceptScore W3185453709C153180895 @default.
- W3185453709 hasConceptScore W3185453709C154945302 @default.
- W3185453709 hasConceptScore W3185453709C165205528 @default.
- W3185453709 hasConceptScore W3185453709C168167062 @default.
- W3185453709 hasConceptScore W3185453709C171912257 @default.
- W3185453709 hasConceptScore W3185453709C175551986 @default.
- W3185453709 hasConceptScore W3185453709C200601418 @default.
- W3185453709 hasConceptScore W3185453709C27438332 @default.
- W3185453709 hasConceptScore W3185453709C2776401178 @default.
- W3185453709 hasConceptScore W3185453709C2776436953 @default.
- W3185453709 hasConceptScore W3185453709C2780365114 @default.
- W3185453709 hasConceptScore W3185453709C41008148 @default.
- W3185453709 hasConceptScore W3185453709C41895202 @default.
- W3185453709 hasConceptScore W3185453709C50644808 @default.
- W3185453709 hasConceptScore W3185453709C52622490 @default.
- W3185453709 hasConceptScore W3185453709C55439883 @default.
- W3185453709 hasConceptScore W3185453709C66283442 @default.
- W3185453709 hasConceptScore W3185453709C78519656 @default.
- W3185453709 hasConceptScore W3185453709C97355855 @default.