Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185539438> ?p ?o ?g. }
- W3185539438 endingPage "20200574" @default.
- W3185539438 startingPage "20200574" @default.
- W3185539438 abstract "During the past two decades, the world has confronted many pandemic disease outbreaks. Ebola, severe acute respiratory syndrome, Middle East respiratory syndrome, and, recently, coronavirus disease (COVID-19) have had a massive global impact in terms of stress on local and global human health, economic destruction, and, above all, damage to usual human life. Analyzing past similar infections will help in drawing inferences such as maintaining social distancing, herd immunity, and vaccinating massively to go forward beyond this pandemic. The development of a forecasting model of COVID-19 infectious disease spreading rate plays a vital role in the future preparation of hospital facilities, such as setting up isolated wards, oxygen cylinders, and ventilators, etc., for future patients by the government. Also, the forecasting technique and model is in immediate need for us to understand and face the effect of this and future pandemics. The main objective of this work is to develop an intelligent model based on deep learning for forecasting or estimating COVID-19 future spreading rate in terms of confirmed, recovered, and deceased cases of 85 days in 4 states in India and India overall. Deep learning neural networks, a kind of machine learning technique, are a powerful tool to predict the future because of their nature of discovering complex nonlinear dependencies. A deep learning long short-term memory (LSTM) network, which is explicitly designed for learning long-term dependencies, is utilized in this work. Hence, one can predict 1 day ahead to any number of (up to 400) days ahead by using this model. To evaluate the performance of the deep learning forecasting model and to endorse its forecasting accuracy, the criteria of mean absolute error, mean square error, root mean square error, mean absolute percentage error, and Ro are used. The results of the proposed deep learning–based LSTM model are validated by statistical analysis and graphical analysis. Moreover, the proposed model exhibited superior forecasting accuracy." @default.
- W3185539438 created "2021-08-02" @default.
- W3185539438 creator A5018063453 @default.
- W3185539438 creator A5025405432 @default.
- W3185539438 creator A5088014774 @default.
- W3185539438 date "2021-07-22" @default.
- W3185539438 modified "2023-09-26" @default.
- W3185539438 title "Deep Learning–Based Forecasting of COVID-19 in India" @default.
- W3185539438 cites W1849879787 @default.
- W3185539438 cites W1969290598 @default.
- W3185539438 cites W2024032348 @default.
- W3185539438 cites W2087160064 @default.
- W3185539438 cites W2765587036 @default.
- W3185539438 cites W2777314154 @default.
- W3185539438 cites W2793511398 @default.
- W3185539438 cites W2891373692 @default.
- W3185539438 cites W2897709893 @default.
- W3185539438 cites W2902729573 @default.
- W3185539438 cites W2904330851 @default.
- W3185539438 cites W2906578344 @default.
- W3185539438 cites W2946899562 @default.
- W3185539438 cites W2952382660 @default.
- W3185539438 cites W2952534036 @default.
- W3185539438 cites W2983441169 @default.
- W3185539438 cites W2983744909 @default.
- W3185539438 cites W2986202533 @default.
- W3185539438 cites W3008443627 @default.
- W3185539438 cites W3009876049 @default.
- W3185539438 cites W3010062253 @default.
- W3185539438 cites W3013601031 @default.
- W3185539438 cites W3014226016 @default.
- W3185539438 cites W3016540417 @default.
- W3185539438 cites W3017628465 @default.
- W3185539438 cites W3017644243 @default.
- W3185539438 cites W3019119825 @default.
- W3185539438 cites W3021622280 @default.
- W3185539438 cites W3022714712 @default.
- W3185539438 cites W3024990888 @default.
- W3185539438 cites W3025621471 @default.
- W3185539438 cites W3030109869 @default.
- W3185539438 cites W3030621456 @default.
- W3185539438 cites W3032502637 @default.
- W3185539438 cites W3038780555 @default.
- W3185539438 cites W3047203988 @default.
- W3185539438 cites W3081923509 @default.
- W3185539438 cites W3086654508 @default.
- W3185539438 cites W3100498426 @default.
- W3185539438 cites W3106008401 @default.
- W3185539438 cites W3107992668 @default.
- W3185539438 doi "https://doi.org/10.1520/jte20200574" @default.
- W3185539438 hasPublicationYear "2021" @default.
- W3185539438 type Work @default.
- W3185539438 sameAs 3185539438 @default.
- W3185539438 citedByCount "0" @default.
- W3185539438 crossrefType "journal-article" @default.
- W3185539438 hasAuthorship W3185539438A5018063453 @default.
- W3185539438 hasAuthorship W3185539438A5025405432 @default.
- W3185539438 hasAuthorship W3185539438A5088014774 @default.
- W3185539438 hasConcept C108583219 @default.
- W3185539438 hasConcept C116675565 @default.
- W3185539438 hasConcept C127413603 @default.
- W3185539438 hasConcept C138816342 @default.
- W3185539438 hasConcept C138885662 @default.
- W3185539438 hasConcept C142724271 @default.
- W3185539438 hasConcept C144133560 @default.
- W3185539438 hasConcept C154945302 @default.
- W3185539438 hasConcept C159047783 @default.
- W3185539438 hasConcept C159110408 @default.
- W3185539438 hasConcept C18762648 @default.
- W3185539438 hasConcept C2778137410 @default.
- W3185539438 hasConcept C2779134260 @default.
- W3185539438 hasConcept C3008058167 @default.
- W3185539438 hasConcept C41008148 @default.
- W3185539438 hasConcept C41895202 @default.
- W3185539438 hasConcept C42475967 @default.
- W3185539438 hasConcept C46578552 @default.
- W3185539438 hasConcept C524204448 @default.
- W3185539438 hasConcept C71924100 @default.
- W3185539438 hasConcept C78519656 @default.
- W3185539438 hasConcept C89623803 @default.
- W3185539438 hasConceptScore W3185539438C108583219 @default.
- W3185539438 hasConceptScore W3185539438C116675565 @default.
- W3185539438 hasConceptScore W3185539438C127413603 @default.
- W3185539438 hasConceptScore W3185539438C138816342 @default.
- W3185539438 hasConceptScore W3185539438C138885662 @default.
- W3185539438 hasConceptScore W3185539438C142724271 @default.
- W3185539438 hasConceptScore W3185539438C144133560 @default.
- W3185539438 hasConceptScore W3185539438C154945302 @default.
- W3185539438 hasConceptScore W3185539438C159047783 @default.
- W3185539438 hasConceptScore W3185539438C159110408 @default.
- W3185539438 hasConceptScore W3185539438C18762648 @default.
- W3185539438 hasConceptScore W3185539438C2778137410 @default.
- W3185539438 hasConceptScore W3185539438C2779134260 @default.
- W3185539438 hasConceptScore W3185539438C3008058167 @default.
- W3185539438 hasConceptScore W3185539438C41008148 @default.
- W3185539438 hasConceptScore W3185539438C41895202 @default.
- W3185539438 hasConceptScore W3185539438C42475967 @default.
- W3185539438 hasConceptScore W3185539438C46578552 @default.