Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185542499> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3185542499 endingPage "115598" @default.
- W3185542499 startingPage "115598" @default.
- W3185542499 abstract "Computer-aided diagnosis using retinal fundus images is crucial for the early detection of many ocular and systemic diseases. Nowadays, deep learning-based approaches are commonly used for this purpose. However, training deep neural networks usually requires a large amount of annotated data, which is not always available. In practice, this issue is commonly mitigated with different techniques, such as data augmentation or transfer learning. Nevertheless, the latter is typically faced using networks that were pre-trained on additional annotated data. An emerging alternative to the traditional transfer learning source tasks is the use of self-supervised tasks that do not require manually annotated data for training. In that regard, we propose a novel self-supervised visual learning strategy for improving the retinal computer-aided diagnosis systems using unlabeled multimodal data. In particular, we explore the use of a multimodal reconstruction task between complementary retinal imaging modalities. This allows to take advantage of existent unlabeled multimodal data in the medical domain, improving the diagnosis of different ocular diseases with additional domain-specific knowledge that does not rely on manual annotation. To validate and analyze the proposed approach, we performed several experiments aiming at the diagnosis of different diseases, including two of the most prevalent impairing ocular disorders: glaucoma and age-related macular degeneration. Additionally, the advantages of the proposed approach are clearly demonstrated in the comparisons that we perform against both the common fully-supervised approaches in the literature as well as current self-supervised alternatives for retinal computer-aided diagnosis. In general, the results show a satisfactory performance of our proposal, which improves existing alternatives by leveraging the unlabeled multimodal visual data that is commonly available in the medical field. • Self-supervised multimodal pre-training improves retinal computer-aided diagnosis. • Multimodal reconstruction provides domain-specific knowledge using unlabeled images. • Age-related macular degeneration and glaucoma diagnosis using deep learning. • Deep learning approach for computer-aided diagnosis with limited annotated data. • The proposal outperforms other self-supervised and fully-supervised alternatives." @default.
- W3185542499 created "2021-08-02" @default.
- W3185542499 creator A5032144370 @default.
- W3185542499 creator A5057860861 @default.
- W3185542499 creator A5059859767 @default.
- W3185542499 creator A5077849552 @default.
- W3185542499 date "2021-12-01" @default.
- W3185542499 modified "2023-10-10" @default.
- W3185542499 title "Self-supervised multimodal reconstruction pre-training for retinal computer-aided diagnosis" @default.
- W3185542499 cites W2034742711 @default.
- W3185542499 cites W2133665775 @default.
- W3185542499 cites W2346062110 @default.
- W3185542499 cites W2592929672 @default.
- W3185542499 cites W2887680499 @default.
- W3185542499 cites W2915002079 @default.
- W3185542499 cites W2937343562 @default.
- W3185542499 cites W2962936819 @default.
- W3185542499 cites W2963752842 @default.
- W3185542499 cites W2964317695 @default.
- W3185542499 cites W2964744899 @default.
- W3185542499 cites W3012086751 @default.
- W3185542499 cites W3037073017 @default.
- W3185542499 cites W4252865652 @default.
- W3185542499 doi "https://doi.org/10.1016/j.eswa.2021.115598" @default.
- W3185542499 hasPublicationYear "2021" @default.
- W3185542499 type Work @default.
- W3185542499 sameAs 3185542499 @default.
- W3185542499 citedByCount "5" @default.
- W3185542499 countsByYear W31855424992022 @default.
- W3185542499 countsByYear W31855424992023 @default.
- W3185542499 crossrefType "journal-article" @default.
- W3185542499 hasAuthorship W3185542499A5032144370 @default.
- W3185542499 hasAuthorship W3185542499A5057860861 @default.
- W3185542499 hasAuthorship W3185542499A5059859767 @default.
- W3185542499 hasAuthorship W3185542499A5077849552 @default.
- W3185542499 hasBestOaLocation W31855424991 @default.
- W3185542499 hasConcept C119857082 @default.
- W3185542499 hasConcept C121332964 @default.
- W3185542499 hasConcept C153180895 @default.
- W3185542499 hasConcept C153294291 @default.
- W3185542499 hasConcept C154945302 @default.
- W3185542499 hasConcept C199360897 @default.
- W3185542499 hasConcept C2777211547 @default.
- W3185542499 hasConcept C2779549770 @default.
- W3185542499 hasConcept C2780727963 @default.
- W3185542499 hasConcept C31972630 @default.
- W3185542499 hasConcept C41008148 @default.
- W3185542499 hasConceptScore W3185542499C119857082 @default.
- W3185542499 hasConceptScore W3185542499C121332964 @default.
- W3185542499 hasConceptScore W3185542499C153180895 @default.
- W3185542499 hasConceptScore W3185542499C153294291 @default.
- W3185542499 hasConceptScore W3185542499C154945302 @default.
- W3185542499 hasConceptScore W3185542499C199360897 @default.
- W3185542499 hasConceptScore W3185542499C2777211547 @default.
- W3185542499 hasConceptScore W3185542499C2779549770 @default.
- W3185542499 hasConceptScore W3185542499C2780727963 @default.
- W3185542499 hasConceptScore W3185542499C31972630 @default.
- W3185542499 hasConceptScore W3185542499C41008148 @default.
- W3185542499 hasLocation W31855424991 @default.
- W3185542499 hasLocation W31855424992 @default.
- W3185542499 hasOpenAccess W3185542499 @default.
- W3185542499 hasPrimaryLocation W31855424991 @default.
- W3185542499 hasRelatedWork W2009991359 @default.
- W3185542499 hasRelatedWork W2089266992 @default.
- W3185542499 hasRelatedWork W2153078852 @default.
- W3185542499 hasRelatedWork W2154253115 @default.
- W3185542499 hasRelatedWork W230091440 @default.
- W3185542499 hasRelatedWork W2357247255 @default.
- W3185542499 hasRelatedWork W2374500028 @default.
- W3185542499 hasRelatedWork W2412450268 @default.
- W3185542499 hasRelatedWork W2742918975 @default.
- W3185542499 hasRelatedWork W65331515 @default.
- W3185542499 hasVolume "185" @default.
- W3185542499 isParatext "false" @default.
- W3185542499 isRetracted "false" @default.
- W3185542499 magId "3185542499" @default.
- W3185542499 workType "article" @default.