Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185565933> ?p ?o ?g. }
- W3185565933 endingPage "1769" @default.
- W3185565933 startingPage "1769" @default.
- W3185565933 abstract "Emotion-aware music recommendations has gained increasing attention in recent years, as music comes with the ability to regulate human emotions. Exploiting emotional information has the potential to improve recommendation performances. However, conventional studies identified emotion as discrete representations, and could not predict users’ emotional states at time points when no user activity data exists, let alone the awareness of the influences posed by social events. In this study, we proposed an emotion-aware music recommendation method using deep neural networks (emoMR). We modeled a representation of music emotion using low-level audio features and music metadata, model the users’ emotion states using an artificial emotion generation model with endogenous factors exogenous factors capable of expressing the influences posed by events on emotions. The two models were trained using a designed deep neural network architecture (emoDNN) to predict the music emotions for the music and the music emotion preferences for the users in a continuous form. Based on the models, we proposed a hybrid approach of combining content-based and collaborative filtering for generating emotion-aware music recommendations. Experiment results show that emoMR performs better in the metrics of Precision, Recall, F1, and HitRate than the other baseline algorithms. We also tested the performance of emoMR on two major events (the death of Yuan Longping and the Coronavirus Disease 2019 (COVID-19) cases in Zhejiang). Results show that emoMR takes advantage of event information and outperforms other baseline algorithms." @default.
- W3185565933 created "2021-08-02" @default.
- W3185565933 creator A5014854995 @default.
- W3185565933 creator A5022041233 @default.
- W3185565933 creator A5023375508 @default.
- W3185565933 creator A5046076118 @default.
- W3185565933 date "2021-07-24" @default.
- W3185565933 modified "2023-10-15" @default.
- W3185565933 title "A Novel Emotion-Aware Hybrid Music Recommendation Method Using Deep Neural Network" @default.
- W3185565933 cites W1980450172 @default.
- W3185565933 cites W1983507146 @default.
- W3185565933 cites W1986572744 @default.
- W3185565933 cites W2012500875 @default.
- W3185565933 cites W2027168481 @default.
- W3185565933 cites W2032748682 @default.
- W3185565933 cites W2038123411 @default.
- W3185565933 cites W2046521535 @default.
- W3185565933 cites W2054281769 @default.
- W3185565933 cites W2060265205 @default.
- W3185565933 cites W2070242675 @default.
- W3185565933 cites W2079006378 @default.
- W3185565933 cites W2081724542 @default.
- W3185565933 cites W2085264948 @default.
- W3185565933 cites W2085876421 @default.
- W3185565933 cites W2088703522 @default.
- W3185565933 cites W2105623871 @default.
- W3185565933 cites W2108400233 @default.
- W3185565933 cites W2129086803 @default.
- W3185565933 cites W2132889650 @default.
- W3185565933 cites W2150753505 @default.
- W3185565933 cites W2151067019 @default.
- W3185565933 cites W2170097564 @default.
- W3185565933 cites W2190079936 @default.
- W3185565933 cites W2318772545 @default.
- W3185565933 cites W2319056267 @default.
- W3185565933 cites W2334831412 @default.
- W3185565933 cites W2551231535 @default.
- W3185565933 cites W2600638094 @default.
- W3185565933 cites W2604132847 @default.
- W3185565933 cites W2752234108 @default.
- W3185565933 cites W2760990126 @default.
- W3185565933 cites W2768181417 @default.
- W3185565933 cites W2788652773 @default.
- W3185565933 cites W2793148563 @default.
- W3185565933 cites W2797659139 @default.
- W3185565933 cites W2806792888 @default.
- W3185565933 cites W2858548702 @default.
- W3185565933 cites W2889386526 @default.
- W3185565933 cites W2904628477 @default.
- W3185565933 cites W2905804369 @default.
- W3185565933 cites W2918087949 @default.
- W3185565933 cites W2926310017 @default.
- W3185565933 cites W2947068076 @default.
- W3185565933 cites W2967638906 @default.
- W3185565933 cites W3087948925 @default.
- W3185565933 cites W3117020206 @default.
- W3185565933 cites W3119873652 @default.
- W3185565933 cites W3124416786 @default.
- W3185565933 cites W3156417644 @default.
- W3185565933 cites W3162686100 @default.
- W3185565933 cites W3163426640 @default.
- W3185565933 cites W3164583058 @default.
- W3185565933 doi "https://doi.org/10.3390/electronics10151769" @default.
- W3185565933 hasPublicationYear "2021" @default.
- W3185565933 type Work @default.
- W3185565933 sameAs 3185565933 @default.
- W3185565933 citedByCount "6" @default.
- W3185565933 countsByYear W31855659332022 @default.
- W3185565933 countsByYear W31855659332023 @default.
- W3185565933 crossrefType "journal-article" @default.
- W3185565933 hasAuthorship W3185565933A5014854995 @default.
- W3185565933 hasAuthorship W3185565933A5022041233 @default.
- W3185565933 hasAuthorship W3185565933A5023375508 @default.
- W3185565933 hasAuthorship W3185565933A5046076118 @default.
- W3185565933 hasBestOaLocation W31855659333 @default.
- W3185565933 hasConcept C100660578 @default.
- W3185565933 hasConcept C111368507 @default.
- W3185565933 hasConcept C119857082 @default.
- W3185565933 hasConcept C121332964 @default.
- W3185565933 hasConcept C12725497 @default.
- W3185565933 hasConcept C127313418 @default.
- W3185565933 hasConcept C136764020 @default.
- W3185565933 hasConcept C154945302 @default.
- W3185565933 hasConcept C15744967 @default.
- W3185565933 hasConcept C17744445 @default.
- W3185565933 hasConcept C180747234 @default.
- W3185565933 hasConcept C199539241 @default.
- W3185565933 hasConcept C206310091 @default.
- W3185565933 hasConcept C2776359362 @default.
- W3185565933 hasConcept C2777438025 @default.
- W3185565933 hasConcept C2779662365 @default.
- W3185565933 hasConcept C2988148770 @default.
- W3185565933 hasConcept C41008148 @default.
- W3185565933 hasConcept C50644808 @default.
- W3185565933 hasConcept C557471498 @default.
- W3185565933 hasConcept C62520636 @default.
- W3185565933 hasConcept C81669768 @default.
- W3185565933 hasConcept C93518851 @default.