Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185676616> ?p ?o ?g. }
- W3185676616 endingPage "128358" @default.
- W3185676616 startingPage "128358" @default.
- W3185676616 abstract "Latest reports of the European Environment Agency and Agência Portuguesa do Ambiente raise a reasonable doubt on the satisfaction of 2030 targets imposed by supranational regulation for sulfur dioxide emissions in Portugal. As such, efforts to predict the evolution and estimate statistically significant effects of covariates related to this air pollutant are recommended. Bayesian, econometrics and machine learning models are applied to predict future values of sulfur dioxide emissions in the vicinity of the most relevant thermoelectric power plant located in Portugal. Based on a multivariate time series analysis containing data that ranges from July 2017 to April 2020, several conclusions are identified. Predicted values of sulfur dioxide emissions of the five models exhibiting the lowest forecast error are strongly correlated, particularly in the interval 0.35± 0.10μg/m3. The application of multi-step ahead forecasting analysis and nonlinear ensemble algorithms reinforces the main result from the one-step ahead forecasting exercise, where it is demonstrated that machine learning models have a better generalization power compared to classical approaches. Additionally, an identification strategy is proposed to assess the efficacy of a firm-specific measure adopted in 2017 (i.e., qualitative improvement of the desulfurization process to reduce the level of sulfur dioxide emissions). Super learning algorithms confirm that sulfur dioxide emissions in 2017 were approximately 19% greater relative to the period 2018–2020, which allows to conclude that the effort promoted by the firm was effective. From a regulatory point of view, this study confirms that Portugal is likely to satisfy 2030 targets imposed by supranational regulation for sulfur dioxide emissions and provides useful recommendations to ensure the persistence of best air quality sustainability practices." @default.
- W3185676616 created "2021-08-02" @default.
- W3185676616 creator A5009355033 @default.
- W3185676616 date "2021-10-01" @default.
- W3185676616 modified "2023-09-27" @default.
- W3185676616 title "Sulfur dioxide emissions in Portugal: Prediction, estimation and air quality regulation using machine learning" @default.
- W3185676616 cites W1650543399 @default.
- W3185676616 cites W1961746242 @default.
- W3185676616 cites W1963718895 @default.
- W3185676616 cites W1965091995 @default.
- W3185676616 cites W1965369108 @default.
- W3185676616 cites W1968840994 @default.
- W3185676616 cites W1968988752 @default.
- W3185676616 cites W1970291820 @default.
- W3185676616 cites W1978855141 @default.
- W3185676616 cites W1980264541 @default.
- W3185676616 cites W1983734102 @default.
- W3185676616 cites W1988790447 @default.
- W3185676616 cites W1991927948 @default.
- W3185676616 cites W1992682368 @default.
- W3185676616 cites W1994124263 @default.
- W3185676616 cites W1999508878 @default.
- W3185676616 cites W2000632882 @default.
- W3185676616 cites W2001414605 @default.
- W3185676616 cites W2002592433 @default.
- W3185676616 cites W2002758482 @default.
- W3185676616 cites W2002954637 @default.
- W3185676616 cites W2009225465 @default.
- W3185676616 cites W2016210396 @default.
- W3185676616 cites W2020925091 @default.
- W3185676616 cites W2027148920 @default.
- W3185676616 cites W2031281325 @default.
- W3185676616 cites W2033412785 @default.
- W3185676616 cites W2036515851 @default.
- W3185676616 cites W2037470474 @default.
- W3185676616 cites W2045912099 @default.
- W3185676616 cites W2051974417 @default.
- W3185676616 cites W2055936218 @default.
- W3185676616 cites W2056186894 @default.
- W3185676616 cites W2056345430 @default.
- W3185676616 cites W2063261057 @default.
- W3185676616 cites W2063978378 @default.
- W3185676616 cites W2064675550 @default.
- W3185676616 cites W2075490785 @default.
- W3185676616 cites W2088711178 @default.
- W3185676616 cites W2092979558 @default.
- W3185676616 cites W2095364399 @default.
- W3185676616 cites W2095578636 @default.
- W3185676616 cites W2097580026 @default.
- W3185676616 cites W2098749092 @default.
- W3185676616 cites W2105934661 @default.
- W3185676616 cites W2121690346 @default.
- W3185676616 cites W2122825543 @default.
- W3185676616 cites W2125565015 @default.
- W3185676616 cites W2127546500 @default.
- W3185676616 cites W2132041826 @default.
- W3185676616 cites W2134731454 @default.
- W3185676616 cites W2135152712 @default.
- W3185676616 cites W2142306678 @default.
- W3185676616 cites W2144428405 @default.
- W3185676616 cites W2150572267 @default.
- W3185676616 cites W2150751323 @default.
- W3185676616 cites W2151658536 @default.
- W3185676616 cites W2154610441 @default.
- W3185676616 cites W2159706540 @default.
- W3185676616 cites W2169867552 @default.
- W3185676616 cites W2171336664 @default.
- W3185676616 cites W2176873786 @default.
- W3185676616 cites W2178225550 @default.
- W3185676616 cites W2188857875 @default.
- W3185676616 cites W2190544473 @default.
- W3185676616 cites W2206553196 @default.
- W3185676616 cites W2217137288 @default.
- W3185676616 cites W2235514407 @default.
- W3185676616 cites W2278860456 @default.
- W3185676616 cites W2282992258 @default.
- W3185676616 cites W2297152540 @default.
- W3185676616 cites W2303862508 @default.
- W3185676616 cites W2317718309 @default.
- W3185676616 cites W2424778531 @default.
- W3185676616 cites W2485882870 @default.
- W3185676616 cites W2521992113 @default.
- W3185676616 cites W2530443992 @default.
- W3185676616 cites W2558467121 @default.
- W3185676616 cites W2560520483 @default.
- W3185676616 cites W2591272380 @default.
- W3185676616 cites W2604847698 @default.
- W3185676616 cites W2610886376 @default.
- W3185676616 cites W2614854554 @default.
- W3185676616 cites W2731135654 @default.
- W3185676616 cites W2733956084 @default.
- W3185676616 cites W2739296691 @default.
- W3185676616 cites W2760506659 @default.
- W3185676616 cites W2768284426 @default.
- W3185676616 cites W2768650472 @default.
- W3185676616 cites W2770188460 @default.
- W3185676616 cites W2770640504 @default.
- W3185676616 cites W2778577610 @default.