Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185684282> ?p ?o ?g. }
- W3185684282 endingPage "103202" @default.
- W3185684282 startingPage "103202" @default.
- W3185684282 abstract "Accurate load monitoring can provide detailed information for users to improve the energy efficiency of buildings. Non-intrusive load monitoring (NILM) has become popular in smart buildings because of its low cost and reasonable privacy. In this paper, a non-intrusive monitoring method for the cooling load of smart buildings is proposed based on random forest. The total building cooling load is disaggregated into four subloads, and two approaches are used to realize the NILM based on the direct or indirect cooling load using a Fourier transform. The proposed method is implemented in an office building, and results show the method can realize cooling load disaggregation accurately. The root-mean-square errors and mean relative errors of the four subloads between the NILM loads and reference loads are less than 51.9 kW and 19.1%. Among the four subloads, the equipment load can be disaggregated with the highest accuracy. Approach I is recommended because of its higher accuracy. The NILM method is optimized in terms of the estimator number, maximum depth, feature number, minimum samples for a split, minimum sample leaf, and size of training samples. The performance of the optimized NILM models is improved with RMSEs and MREs less than 48.3 kW and 6.4%." @default.
- W3185684282 created "2021-08-02" @default.
- W3185684282 creator A5005707692 @default.
- W3185684282 creator A5011792338 @default.
- W3185684282 creator A5029970965 @default.
- W3185684282 creator A5037083684 @default.
- W3185684282 creator A5061887990 @default.
- W3185684282 date "2021-11-01" @default.
- W3185684282 modified "2023-10-17" @default.
- W3185684282 title "Cooling load disaggregation using a NILM method based on random forest for smart buildings" @default.
- W3185684282 cites W1988917187 @default.
- W3185684282 cites W2013486252 @default.
- W3185684282 cites W2016897865 @default.
- W3185684282 cites W2031872521 @default.
- W3185684282 cites W2045247177 @default.
- W3185684282 cites W2046308864 @default.
- W3185684282 cites W2047143310 @default.
- W3185684282 cites W2059774060 @default.
- W3185684282 cites W2071158874 @default.
- W3185684282 cites W2081688265 @default.
- W3185684282 cites W2087722530 @default.
- W3185684282 cites W2123910460 @default.
- W3185684282 cites W2163121678 @default.
- W3185684282 cites W2244766998 @default.
- W3185684282 cites W2522847100 @default.
- W3185684282 cites W2595984151 @default.
- W3185684282 cites W2605614336 @default.
- W3185684282 cites W2697608749 @default.
- W3185684282 cites W2742688473 @default.
- W3185684282 cites W2752854601 @default.
- W3185684282 cites W2794835514 @default.
- W3185684282 cites W2809544166 @default.
- W3185684282 cites W2890123530 @default.
- W3185684282 cites W2902064445 @default.
- W3185684282 cites W2903925216 @default.
- W3185684282 cites W2911964244 @default.
- W3185684282 cites W2918881199 @default.
- W3185684282 cites W2942585425 @default.
- W3185684282 cites W2947023249 @default.
- W3185684282 cites W2950436609 @default.
- W3185684282 cites W2950453703 @default.
- W3185684282 cites W2961574599 @default.
- W3185684282 cites W2964254874 @default.
- W3185684282 cites W2978861075 @default.
- W3185684282 cites W2982441164 @default.
- W3185684282 cites W2988172725 @default.
- W3185684282 cites W2991208212 @default.
- W3185684282 cites W2999349160 @default.
- W3185684282 cites W3017765730 @default.
- W3185684282 cites W3045430323 @default.
- W3185684282 cites W3094680454 @default.
- W3185684282 cites W3122413399 @default.
- W3185684282 cites W3129002219 @default.
- W3185684282 cites W4233104126 @default.
- W3185684282 doi "https://doi.org/10.1016/j.scs.2021.103202" @default.
- W3185684282 hasPublicationYear "2021" @default.
- W3185684282 type Work @default.
- W3185684282 sameAs 3185684282 @default.
- W3185684282 citedByCount "17" @default.
- W3185684282 countsByYear W31856842822022 @default.
- W3185684282 countsByYear W31856842822023 @default.
- W3185684282 crossrefType "journal-article" @default.
- W3185684282 hasAuthorship W3185684282A5005707692 @default.
- W3185684282 hasAuthorship W3185684282A5011792338 @default.
- W3185684282 hasAuthorship W3185684282A5029970965 @default.
- W3185684282 hasAuthorship W3185684282A5037083684 @default.
- W3185684282 hasAuthorship W3185684282A5061887990 @default.
- W3185684282 hasConcept C103742991 @default.
- W3185684282 hasConcept C105795698 @default.
- W3185684282 hasConcept C119599485 @default.
- W3185684282 hasConcept C127413603 @default.
- W3185684282 hasConcept C139945424 @default.
- W3185684282 hasConcept C154945302 @default.
- W3185684282 hasConcept C169258074 @default.
- W3185684282 hasConcept C171146098 @default.
- W3185684282 hasConcept C185429906 @default.
- W3185684282 hasConcept C186370098 @default.
- W3185684282 hasConcept C2781099182 @default.
- W3185684282 hasConcept C2986689482 @default.
- W3185684282 hasConcept C33923547 @default.
- W3185684282 hasConcept C39432304 @default.
- W3185684282 hasConcept C41008148 @default.
- W3185684282 hasConcept C44154836 @default.
- W3185684282 hasConcept C71907059 @default.
- W3185684282 hasConcept C78519656 @default.
- W3185684282 hasConceptScore W3185684282C103742991 @default.
- W3185684282 hasConceptScore W3185684282C105795698 @default.
- W3185684282 hasConceptScore W3185684282C119599485 @default.
- W3185684282 hasConceptScore W3185684282C127413603 @default.
- W3185684282 hasConceptScore W3185684282C139945424 @default.
- W3185684282 hasConceptScore W3185684282C154945302 @default.
- W3185684282 hasConceptScore W3185684282C169258074 @default.
- W3185684282 hasConceptScore W3185684282C171146098 @default.
- W3185684282 hasConceptScore W3185684282C185429906 @default.
- W3185684282 hasConceptScore W3185684282C186370098 @default.
- W3185684282 hasConceptScore W3185684282C2781099182 @default.
- W3185684282 hasConceptScore W3185684282C2986689482 @default.
- W3185684282 hasConceptScore W3185684282C33923547 @default.