Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185788703> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3185788703 endingPage "5642" @default.
- W3185788703 startingPage "5642" @default.
- W3185788703 abstract "Energy system modeling is essential in analyzing present and future system configurations motivated by the energy transition. Energy models need various input data sets at different scales, including detailed information about energy generation and transport infrastructure. However, accessing such data sets is not straightforward and often restricted, especially for energy infrastructure data. We present a detection model for the automatic recognition of pipeline pathways using a Convolutional Neural Network (CNN) to address this lack of energy infrastructure data sets. The model was trained with historical low-resolution satellite images of the construction phase of British gas transport pipelines, made with the Landsat 5 Thematic Mapper instrument. The satellite images have been automatically labeled with the help of high-resolution pipeline route data provided by the respective Transmission System Operator (TSO). We have used data augmentation on the training data and trained our model with four different initial learning rates. The models trained with the different learning rates have been validated with 5-fold cross-validation using the Intersection over Union (IoU) metric. We show that our model can reliably identify pipeline pathways despite the comparably low resolution of the used satellite images. Further, we have successfully tested the model’s capability in other geographic regions by deploying satellite images of the NEL pipeline in Northern Germany." @default.
- W3185788703 created "2021-08-02" @default.
- W3185788703 creator A5003644506 @default.
- W3185788703 creator A5006464804 @default.
- W3185788703 creator A5023436477 @default.
- W3185788703 creator A5051967820 @default.
- W3185788703 date "2021-09-08" @default.
- W3185788703 modified "2023-09-26" @default.
- W3185788703 title "Detecting Pipeline Pathways in Landsat 5 Satellite Images with Deep Learning" @default.
- W3185788703 cites W1590183726 @default.
- W3185788703 cites W1689711448 @default.
- W3185788703 cites W2079198597 @default.
- W3185788703 cites W2135323340 @default.
- W3185788703 cites W2297469626 @default.
- W3185788703 cites W2417992597 @default.
- W3185788703 cites W2561933075 @default.
- W3185788703 cites W2770233088 @default.
- W3185788703 cites W2774320778 @default.
- W3185788703 cites W2783377902 @default.
- W3185788703 cites W2794284562 @default.
- W3185788703 cites W2897992168 @default.
- W3185788703 cites W2919115771 @default.
- W3185788703 cites W2951934944 @default.
- W3185788703 cites W2995696070 @default.
- W3185788703 cites W3015966228 @default.
- W3185788703 cites W3045606376 @default.
- W3185788703 cites W3082631674 @default.
- W3185788703 cites W3120672661 @default.
- W3185788703 doi "https://doi.org/10.3390/en14185642" @default.
- W3185788703 hasPublicationYear "2021" @default.
- W3185788703 type Work @default.
- W3185788703 sameAs 3185788703 @default.
- W3185788703 citedByCount "2" @default.
- W3185788703 countsByYear W31857887032022 @default.
- W3185788703 countsByYear W31857887032023 @default.
- W3185788703 crossrefType "journal-article" @default.
- W3185788703 hasAuthorship W3185788703A5003644506 @default.
- W3185788703 hasAuthorship W3185788703A5006464804 @default.
- W3185788703 hasAuthorship W3185788703A5023436477 @default.
- W3185788703 hasAuthorship W3185788703A5051967820 @default.
- W3185788703 hasBestOaLocation W31857887031 @default.
- W3185788703 hasConcept C108583219 @default.
- W3185788703 hasConcept C124101348 @default.
- W3185788703 hasConcept C127413603 @default.
- W3185788703 hasConcept C146978453 @default.
- W3185788703 hasConcept C154945302 @default.
- W3185788703 hasConcept C19269812 @default.
- W3185788703 hasConcept C199360897 @default.
- W3185788703 hasConcept C205649164 @default.
- W3185788703 hasConcept C2775938548 @default.
- W3185788703 hasConcept C2778102629 @default.
- W3185788703 hasConcept C41008148 @default.
- W3185788703 hasConcept C43521106 @default.
- W3185788703 hasConcept C50644808 @default.
- W3185788703 hasConcept C58640448 @default.
- W3185788703 hasConcept C62649853 @default.
- W3185788703 hasConcept C64543145 @default.
- W3185788703 hasConcept C81363708 @default.
- W3185788703 hasConceptScore W3185788703C108583219 @default.
- W3185788703 hasConceptScore W3185788703C124101348 @default.
- W3185788703 hasConceptScore W3185788703C127413603 @default.
- W3185788703 hasConceptScore W3185788703C146978453 @default.
- W3185788703 hasConceptScore W3185788703C154945302 @default.
- W3185788703 hasConceptScore W3185788703C19269812 @default.
- W3185788703 hasConceptScore W3185788703C199360897 @default.
- W3185788703 hasConceptScore W3185788703C205649164 @default.
- W3185788703 hasConceptScore W3185788703C2775938548 @default.
- W3185788703 hasConceptScore W3185788703C2778102629 @default.
- W3185788703 hasConceptScore W3185788703C41008148 @default.
- W3185788703 hasConceptScore W3185788703C43521106 @default.
- W3185788703 hasConceptScore W3185788703C50644808 @default.
- W3185788703 hasConceptScore W3185788703C58640448 @default.
- W3185788703 hasConceptScore W3185788703C62649853 @default.
- W3185788703 hasConceptScore W3185788703C64543145 @default.
- W3185788703 hasConceptScore W3185788703C81363708 @default.
- W3185788703 hasIssue "18" @default.
- W3185788703 hasLocation W31857887031 @default.
- W3185788703 hasLocation W31857887032 @default.
- W3185788703 hasLocation W31857887033 @default.
- W3185788703 hasOpenAccess W3185788703 @default.
- W3185788703 hasPrimaryLocation W31857887031 @default.
- W3185788703 hasRelatedWork W2731899572 @default.
- W3185788703 hasRelatedWork W2999805992 @default.
- W3185788703 hasRelatedWork W3011074480 @default.
- W3185788703 hasRelatedWork W3116150086 @default.
- W3185788703 hasRelatedWork W3133861977 @default.
- W3185788703 hasRelatedWork W3192840557 @default.
- W3185788703 hasRelatedWork W4200173597 @default.
- W3185788703 hasRelatedWork W4291897433 @default.
- W3185788703 hasRelatedWork W4312417841 @default.
- W3185788703 hasRelatedWork W4321369474 @default.
- W3185788703 hasVolume "14" @default.
- W3185788703 isParatext "false" @default.
- W3185788703 isRetracted "false" @default.
- W3185788703 magId "3185788703" @default.
- W3185788703 workType "article" @default.