Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185793131> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3185793131 endingPage "476" @default.
- W3185793131 startingPage "459" @default.
- W3185793131 abstract "AbstractSocial media is the leading platform to accomplish large data in the field of health discipline tweets everywhere in the world empowerment currently. And it is a prominent data source for searching health terms (topics) and predicts solutions in the direction of health care. Health care has become one of the largest sectors in the world in terms of income and employment. Billions of customers use Twitter daily to enable people to share health-related topics of their views and opinions on various healthcare topics. Topic models commence from natural language processing (NLP) to acquiring immeasurable knowledge on healthcare areas which highly motivated to analyze the topic models (TM). Topic models are addressed intended for the squeezing of health topics for modeling the selective latent tweet documents in the healthcare system. Analyzing the topics in TM is an essential issue and facilitates an unreliable number of topics in TM that address the destitute results in health-related clustering (HRC) in various structured and unstructured data. In this regard, needful visualizations are imperative measurements to clipping the information for identifying cluster direction. So that, to believe and contribute proposed distributed multimodal active topic models such as Hadoop distributed non-negative matrix factorization (HdinNMF), Hadoop distributed latent Dirichlet allocation (HdiLDA), and Hadoop distributed probabilistic latent schematic indexing (HdiPLSI) are reasonable approaches for balancing and clipping to the direction of health topics from various perspective data sources in health statistics clustering. Hadoop DiNNMF distributed model is achieved and covered by cosine metrics when exposed to visual clusters and good performance measures compared to other methods in a series of health conditions. This assistance briefly describes the public health structure (hashtags) in good condition in the country and tracks the evolution of the main health-related tweets for preliminary advice to the public.KeywordsHDFSSentiment analysisNatural language tool kit (NLTK)TF-IDFTwitter APIResource manager (RM)Name node (NN)Data node (DN)" @default.
- W3185793131 created "2021-08-02" @default.
- W3185793131 creator A5048412960 @default.
- W3185793131 creator A5052582901 @default.
- W3185793131 date "2021-07-16" @default.
- W3185793131 modified "2023-10-15" @default.
- W3185793131 title "Distributed Multimodal Aspective on Topic Model Using Sentiment Analysis for Recognition of Public Health Surveillance" @default.
- W3185793131 cites W1902027874 @default.
- W3185793131 cites W1969894105 @default.
- W3185793131 cites W1984251878 @default.
- W3185793131 cites W2001082470 @default.
- W3185793131 cites W2001322210 @default.
- W3185793131 cites W2003994472 @default.
- W3185793131 cites W2063904635 @default.
- W3185793131 cites W2087382273 @default.
- W3185793131 cites W2088467494 @default.
- W3185793131 cites W2089983420 @default.
- W3185793131 cites W2104210067 @default.
- W3185793131 cites W2110693566 @default.
- W3185793131 cites W2125269912 @default.
- W3185793131 cites W2147152072 @default.
- W3185793131 cites W2165401136 @default.
- W3185793131 cites W2174706414 @default.
- W3185793131 cites W2276397252 @default.
- W3185793131 cites W2309276681 @default.
- W3185793131 cites W2490083709 @default.
- W3185793131 cites W2512982496 @default.
- W3185793131 cites W2522581443 @default.
- W3185793131 cites W2587676558 @default.
- W3185793131 cites W2791706747 @default.
- W3185793131 cites W2912078951 @default.
- W3185793131 cites W2942765639 @default.
- W3185793131 cites W2971640505 @default.
- W3185793131 cites W2977542692 @default.
- W3185793131 cites W4243387106 @default.
- W3185793131 cites W7939015 @default.
- W3185793131 doi "https://doi.org/10.1007/978-981-16-2126-0_38" @default.
- W3185793131 hasPublicationYear "2021" @default.
- W3185793131 type Work @default.
- W3185793131 sameAs 3185793131 @default.
- W3185793131 citedByCount "3" @default.
- W3185793131 countsByYear W31857931312022 @default.
- W3185793131 crossrefType "book-chapter" @default.
- W3185793131 hasAuthorship W3185793131A5048412960 @default.
- W3185793131 hasAuthorship W3185793131A5052582901 @default.
- W3185793131 hasConcept C119857082 @default.
- W3185793131 hasConcept C124101348 @default.
- W3185793131 hasConcept C154945302 @default.
- W3185793131 hasConcept C160735492 @default.
- W3185793131 hasConcept C162324750 @default.
- W3185793131 hasConcept C171686336 @default.
- W3185793131 hasConcept C23123220 @default.
- W3185793131 hasConcept C2522767166 @default.
- W3185793131 hasConcept C41008148 @default.
- W3185793131 hasConcept C500882744 @default.
- W3185793131 hasConcept C50522688 @default.
- W3185793131 hasConcept C73555534 @default.
- W3185793131 hasConcept C75684735 @default.
- W3185793131 hasConceptScore W3185793131C119857082 @default.
- W3185793131 hasConceptScore W3185793131C124101348 @default.
- W3185793131 hasConceptScore W3185793131C154945302 @default.
- W3185793131 hasConceptScore W3185793131C160735492 @default.
- W3185793131 hasConceptScore W3185793131C162324750 @default.
- W3185793131 hasConceptScore W3185793131C171686336 @default.
- W3185793131 hasConceptScore W3185793131C23123220 @default.
- W3185793131 hasConceptScore W3185793131C2522767166 @default.
- W3185793131 hasConceptScore W3185793131C41008148 @default.
- W3185793131 hasConceptScore W3185793131C500882744 @default.
- W3185793131 hasConceptScore W3185793131C50522688 @default.
- W3185793131 hasConceptScore W3185793131C73555534 @default.
- W3185793131 hasConceptScore W3185793131C75684735 @default.
- W3185793131 hasLocation W31857931311 @default.
- W3185793131 hasOpenAccess W3185793131 @default.
- W3185793131 hasPrimaryLocation W31857931311 @default.
- W3185793131 hasRelatedWork W2139542205 @default.
- W3185793131 hasRelatedWork W2188506135 @default.
- W3185793131 hasRelatedWork W2204571018 @default.
- W3185793131 hasRelatedWork W2546883625 @default.
- W3185793131 hasRelatedWork W2579282464 @default.
- W3185793131 hasRelatedWork W2623560286 @default.
- W3185793131 hasRelatedWork W3004809299 @default.
- W3185793131 hasRelatedWork W3192175805 @default.
- W3185793131 hasRelatedWork W3205606023 @default.
- W3185793131 hasRelatedWork W4281946382 @default.
- W3185793131 isParatext "false" @default.
- W3185793131 isRetracted "false" @default.
- W3185793131 magId "3185793131" @default.
- W3185793131 workType "book-chapter" @default.