Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185845947> ?p ?o ?g. }
- W3185845947 endingPage "17" @default.
- W3185845947 startingPage "1" @default.
- W3185845947 abstract "The amount of data produced in scientific and commercial fields is growing dramatically. Correspondingly, big data technologies, such as Hadoop and Spark, have emerged to tackle the challenges of collecting, processing, and storing such large-scale data. Unfortunately, big data applications usually have performance issues and do not fully exploit a hardware infrastructure. One reason is that applications are developed using high-level programming languages that do not provide low-level system control in terms of performance of highly parallel programming models like message passing interface (MPI). Moreover, big data is considered a barrier of parallel programming models or accelerators (e.g., CUDA and OpenCL). Therefore, the aim of this study is to investigate how the performance of big data applications can be enhanced without sacrificing the power consumption of a hardware infrastructure. A Hybrid Spark MPI OpenACC (HSMO) system is proposed for integrating Spark as a big data programming model, with MPI and OpenACC as parallel programming models. Such integration brings together the advantages of each programming model and provides greater effectiveness. To enhance performance without sacrificing power consumption, the integration approach needs to exploit the hardware infrastructure in an intelligent manner. For achieving this performance enhancement, a mapping technique is proposed that is built based on the application’s virtual topology as well as the physical topology of the undelaying resources. To the best of our knowledge, there is no existing method in big data applications related to utilizing graphics processing units (GPUs), which are now an essential part of high-performance computing (HPC) as a powerful resource for fast computation." @default.
- W3185845947 created "2021-08-02" @default.
- W3185845947 creator A5016334331 @default.
- W3185845947 creator A5042659148 @default.
- W3185845947 creator A5050323742 @default.
- W3185845947 creator A5074833200 @default.
- W3185845947 creator A5091528197 @default.
- W3185845947 date "2021-07-21" @default.
- W3185845947 modified "2023-09-23" @default.
- W3185845947 title "Accelerating Spark-Based Applications with MPI and OpenACC" @default.
- W3185845947 cites W1123101191 @default.
- W3185845947 cites W1809943808 @default.
- W3185845947 cites W1859126261 @default.
- W3185845947 cites W1964015737 @default.
- W3185845947 cites W1967841763 @default.
- W3185845947 cites W1974396493 @default.
- W3185845947 cites W1976241592 @default.
- W3185845947 cites W2022678927 @default.
- W3185845947 cites W2062140606 @default.
- W3185845947 cites W2079031056 @default.
- W3185845947 cites W2088734805 @default.
- W3185845947 cites W2089442161 @default.
- W3185845947 cites W2129726725 @default.
- W3185845947 cites W2414493891 @default.
- W3185845947 cites W2480409449 @default.
- W3185845947 cites W2613579336 @default.
- W3185845947 cites W2613618711 @default.
- W3185845947 cites W2782676011 @default.
- W3185845947 cites W2789454747 @default.
- W3185845947 cites W2789849097 @default.
- W3185845947 cites W2793755249 @default.
- W3185845947 cites W2795258608 @default.
- W3185845947 cites W2897575502 @default.
- W3185845947 cites W2899482689 @default.
- W3185845947 cites W2911757526 @default.
- W3185845947 cites W2913992067 @default.
- W3185845947 cites W2935725636 @default.
- W3185845947 cites W2962825295 @default.
- W3185845947 cites W2971539494 @default.
- W3185845947 cites W3098407875 @default.
- W3185845947 cites W3102741717 @default.
- W3185845947 cites W3138249759 @default.
- W3185845947 cites W4233980316 @default.
- W3185845947 cites W2954067306 @default.
- W3185845947 doi "https://doi.org/10.1155/2021/9943289" @default.
- W3185845947 hasPublicationYear "2021" @default.
- W3185845947 type Work @default.
- W3185845947 sameAs 3185845947 @default.
- W3185845947 citedByCount "1" @default.
- W3185845947 countsByYear W31858459472023 @default.
- W3185845947 crossrefType "journal-article" @default.
- W3185845947 hasAuthorship W3185845947A5016334331 @default.
- W3185845947 hasAuthorship W3185845947A5042659148 @default.
- W3185845947 hasAuthorship W3185845947A5050323742 @default.
- W3185845947 hasAuthorship W3185845947A5074833200 @default.
- W3185845947 hasAuthorship W3185845947A5091528197 @default.
- W3185845947 hasBestOaLocation W31858459471 @default.
- W3185845947 hasConcept C111919701 @default.
- W3185845947 hasConcept C118524514 @default.
- W3185845947 hasConcept C120314980 @default.
- W3185845947 hasConcept C165696696 @default.
- W3185845947 hasConcept C173608175 @default.
- W3185845947 hasConcept C199360897 @default.
- W3185845947 hasConcept C2778119891 @default.
- W3185845947 hasConcept C2781215313 @default.
- W3185845947 hasConcept C34165917 @default.
- W3185845947 hasConcept C38652104 @default.
- W3185845947 hasConcept C41008148 @default.
- W3185845947 hasConcept C75684735 @default.
- W3185845947 hasConcept C83283714 @default.
- W3185845947 hasConceptScore W3185845947C111919701 @default.
- W3185845947 hasConceptScore W3185845947C118524514 @default.
- W3185845947 hasConceptScore W3185845947C120314980 @default.
- W3185845947 hasConceptScore W3185845947C165696696 @default.
- W3185845947 hasConceptScore W3185845947C173608175 @default.
- W3185845947 hasConceptScore W3185845947C199360897 @default.
- W3185845947 hasConceptScore W3185845947C2778119891 @default.
- W3185845947 hasConceptScore W3185845947C2781215313 @default.
- W3185845947 hasConceptScore W3185845947C34165917 @default.
- W3185845947 hasConceptScore W3185845947C38652104 @default.
- W3185845947 hasConceptScore W3185845947C41008148 @default.
- W3185845947 hasConceptScore W3185845947C75684735 @default.
- W3185845947 hasConceptScore W3185845947C83283714 @default.
- W3185845947 hasLocation W31858459471 @default.
- W3185845947 hasOpenAccess W3185845947 @default.
- W3185845947 hasPrimaryLocation W31858459471 @default.
- W3185845947 hasRelatedWork W164750744 @default.
- W3185845947 hasRelatedWork W1983385707 @default.
- W3185845947 hasRelatedWork W2080914619 @default.
- W3185845947 hasRelatedWork W2344775847 @default.
- W3185845947 hasRelatedWork W2379651489 @default.
- W3185845947 hasRelatedWork W2381479928 @default.
- W3185845947 hasRelatedWork W2389600408 @default.
- W3185845947 hasRelatedWork W2954980378 @default.
- W3185845947 hasRelatedWork W3146219120 @default.
- W3185845947 hasRelatedWork W3185845947 @default.
- W3185845947 hasVolume "2021" @default.
- W3185845947 isParatext "false" @default.