Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185884966> ?p ?o ?g. }
- W3185884966 abstract "Abstract Background As proven to reflect the work state of heart and physiological situation objectively, electrocardiogram (ECG) is widely used in the assessment of human health, especially the diagnosis of heart disease. The accuracy and reliability of abnormal ECG (AECG) decision depend to a large extent on the feature extraction. However, it is often uneasy or even impossible to obtain accurate features, as the detection process of ECG is easily disturbed by the external environment. And AECG got many species and great variation. What’s more, the ECG result obtained after a long time past, which can not reach the purpose of early warning or real-time disease diagnosis. Therefore, developing an intelligent classification model with an accurate feature extraction method to identify AECG is of quite significance. This study aimed to explore an accurate feature extraction method of ECG and establish a suitable model for identifying AECG and the diagnosis of heart disease. Methods In this research, the wavelet combined with four operations and adaptive threshold methods were applied to filter the ECG and extract its feature waves first. Then, a BP neural network (BPNN) intelligent model and a particle swarm optimization (PSO) improved BPNN (PSO-BPNN) intelligent model based on MIT-BIH open database was established to identify ECG. To reduce the complexity of the model, the principal component analysis (PCA) was used to minimize the feature dimension. Results Wavelet transforms combined four operations and adaptive threshold methods were capable of ECG filtering and feature extraction. PCA can significantly deduce the modeling feature dimension to minimize the complexity and save classification time. The PSO-BPNN intelligent model was suitable for identifying five types of ECG and showed better effects while comparing it with the BPNN model. Conclusion In summary, it was further concluded that the PSO-BPNN intelligent model would be a suitable way to identify AECG and provide a tool for the diagnosis of heart disease." @default.
- W3185884966 created "2021-08-02" @default.
- W3185884966 creator A5001257726 @default.
- W3185884966 creator A5004753222 @default.
- W3185884966 creator A5008010630 @default.
- W3185884966 creator A5019258983 @default.
- W3185884966 creator A5032122555 @default.
- W3185884966 creator A5033895107 @default.
- W3185884966 creator A5048854615 @default.
- W3185884966 date "2021-07-01" @default.
- W3185884966 modified "2023-10-17" @default.
- W3185884966 title "A particle swarm optimization improved BP neural network intelligent model for electrocardiogram classification" @default.
- W3185884966 cites W1787250107 @default.
- W3185884966 cites W2020248903 @default.
- W3185884966 cites W2020917271 @default.
- W3185884966 cites W2055741845 @default.
- W3185884966 cites W2071901586 @default.
- W3185884966 cites W2078412950 @default.
- W3185884966 cites W2117911070 @default.
- W3185884966 cites W2133876672 @default.
- W3185884966 cites W2162816509 @default.
- W3185884966 cites W2170839606 @default.
- W3185884966 cites W2276849971 @default.
- W3185884966 cites W2511679710 @default.
- W3185884966 cites W2596241027 @default.
- W3185884966 cites W2751547580 @default.
- W3185884966 cites W2771148491 @default.
- W3185884966 cites W2782117932 @default.
- W3185884966 cites W2804536885 @default.
- W3185884966 cites W2888224102 @default.
- W3185884966 cites W2891157358 @default.
- W3185884966 cites W2900744778 @default.
- W3185884966 cites W2901678325 @default.
- W3185884966 cites W2902307718 @default.
- W3185884966 cites W2902644322 @default.
- W3185884966 cites W2957191422 @default.
- W3185884966 cites W2964153462 @default.
- W3185884966 cites W2990713549 @default.
- W3185884966 cites W3015001108 @default.
- W3185884966 cites W3016253256 @default.
- W3185884966 cites W3016267408 @default.
- W3185884966 cites W3030628169 @default.
- W3185884966 cites W3033523981 @default.
- W3185884966 cites W3033654641 @default.
- W3185884966 cites W3039570131 @default.
- W3185884966 cites W3043672837 @default.
- W3185884966 cites W3044458085 @default.
- W3185884966 cites W3047298504 @default.
- W3185884966 cites W3048052158 @default.
- W3185884966 cites W3049123764 @default.
- W3185884966 cites W3055270720 @default.
- W3185884966 cites W3093397767 @default.
- W3185884966 cites W3095608938 @default.
- W3185884966 cites W3102439546 @default.
- W3185884966 doi "https://doi.org/10.1186/s12911-021-01453-6" @default.
- W3185884966 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8322832" @default.
- W3185884966 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34330266" @default.
- W3185884966 hasPublicationYear "2021" @default.
- W3185884966 type Work @default.
- W3185884966 sameAs 3185884966 @default.
- W3185884966 citedByCount "3" @default.
- W3185884966 countsByYear W31858849662022 @default.
- W3185884966 countsByYear W31858849662023 @default.
- W3185884966 crossrefType "journal-article" @default.
- W3185884966 hasAuthorship W3185884966A5001257726 @default.
- W3185884966 hasAuthorship W3185884966A5004753222 @default.
- W3185884966 hasAuthorship W3185884966A5008010630 @default.
- W3185884966 hasAuthorship W3185884966A5019258983 @default.
- W3185884966 hasAuthorship W3185884966A5032122555 @default.
- W3185884966 hasAuthorship W3185884966A5033895107 @default.
- W3185884966 hasAuthorship W3185884966A5048854615 @default.
- W3185884966 hasBestOaLocation W31858849661 @default.
- W3185884966 hasConcept C119857082 @default.
- W3185884966 hasConcept C124101348 @default.
- W3185884966 hasConcept C138885662 @default.
- W3185884966 hasConcept C153180895 @default.
- W3185884966 hasConcept C154945302 @default.
- W3185884966 hasConcept C27438332 @default.
- W3185884966 hasConcept C2776401178 @default.
- W3185884966 hasConcept C41008148 @default.
- W3185884966 hasConcept C41895202 @default.
- W3185884966 hasConcept C47432892 @default.
- W3185884966 hasConcept C50644808 @default.
- W3185884966 hasConcept C52622490 @default.
- W3185884966 hasConcept C70518039 @default.
- W3185884966 hasConcept C85617194 @default.
- W3185884966 hasConceptScore W3185884966C119857082 @default.
- W3185884966 hasConceptScore W3185884966C124101348 @default.
- W3185884966 hasConceptScore W3185884966C138885662 @default.
- W3185884966 hasConceptScore W3185884966C153180895 @default.
- W3185884966 hasConceptScore W3185884966C154945302 @default.
- W3185884966 hasConceptScore W3185884966C27438332 @default.
- W3185884966 hasConceptScore W3185884966C2776401178 @default.
- W3185884966 hasConceptScore W3185884966C41008148 @default.
- W3185884966 hasConceptScore W3185884966C41895202 @default.
- W3185884966 hasConceptScore W3185884966C47432892 @default.
- W3185884966 hasConceptScore W3185884966C50644808 @default.
- W3185884966 hasConceptScore W3185884966C52622490 @default.
- W3185884966 hasConceptScore W3185884966C70518039 @default.
- W3185884966 hasConceptScore W3185884966C85617194 @default.