Matches in SemOpenAlex for { <https://semopenalex.org/work/W3185921853> ?p ?o ?g. }
- W3185921853 abstract "Abstract The last decade brought significant advances in automatic speech recognition (ASR) thanks to the evolution of deep learning methods. ASR systems evolved from pipeline-based systems, that modeled hand-crafted speech features with probabilistic frameworks and generated phone posteriors, to end-to-end (E2E) systems, that translate the raw waveform directly into words using one deep neural network (DNN). The transcription accuracy greatly increased, leading to ASR technology being integrated into many commercial applications. However, few of the existing ASR technologies are suitable for integration in embedded applications, due to their hard constrains related to computing power and memory usage. This overview paper serves as a guided tour through the recent literature on speech recognition and compares the most popular ASR implementations. The comparison emphasizes the trade-off between ASR performance and hardware requirements, to further serve decision makers in choosing the system which fits best their embedded application. To the best of our knowledge, this is the first study to provide this kind of trade-off analysis for state-of-the-art ASR systems." @default.
- W3185921853 created "2021-08-02" @default.
- W3185921853 creator A5031107943 @default.
- W3185921853 creator A5032257745 @default.
- W3185921853 creator A5069983774 @default.
- W3185921853 creator A5076669165 @default.
- W3185921853 date "2021-07-21" @default.
- W3185921853 modified "2023-10-11" @default.
- W3185921853 title "Performance vs. hardware requirements in state-of-the-art automatic speech recognition" @default.
- W3185921853 cites W1494198834 @default.
- W3185921853 cites W1991133427 @default.
- W3185921853 cites W1995562189 @default.
- W3185921853 cites W2024490156 @default.
- W3185921853 cites W2086699924 @default.
- W3185921853 cites W2103869314 @default.
- W3185921853 cites W2107638917 @default.
- W3185921853 cites W2117671523 @default.
- W3185921853 cites W2127141656 @default.
- W3185921853 cites W2143612262 @default.
- W3185921853 cites W2148154194 @default.
- W3185921853 cites W2150769028 @default.
- W3185921853 cites W2158069733 @default.
- W3185921853 cites W2160815625 @default.
- W3185921853 cites W2166637769 @default.
- W3185921853 cites W2169992508 @default.
- W3185921853 cites W2171928131 @default.
- W3185921853 cites W2293634267 @default.
- W3185921853 cites W2327501763 @default.
- W3185921853 cites W2402146185 @default.
- W3185921853 cites W2514741789 @default.
- W3185921853 cites W2529096783 @default.
- W3185921853 cites W2585720638 @default.
- W3185921853 cites W2618099328 @default.
- W3185921853 cites W2627092829 @default.
- W3185921853 cites W2766195687 @default.
- W3185921853 cites W2799800213 @default.
- W3185921853 cites W2802201485 @default.
- W3185921853 cites W2888779557 @default.
- W3185921853 cites W2888867175 @default.
- W3185921853 cites W2889282842 @default.
- W3185921853 cites W2891540872 @default.
- W3185921853 cites W2931364255 @default.
- W3185921853 cites W2940180244 @default.
- W3185921853 cites W2962784628 @default.
- W3185921853 cites W2962824709 @default.
- W3185921853 cites W2963071736 @default.
- W3185921853 cites W2963240019 @default.
- W3185921853 cites W2963362078 @default.
- W3185921853 cites W2963446712 @default.
- W3185921853 cites W2963654251 @default.
- W3185921853 cites W2963882470 @default.
- W3185921853 cites W2964107261 @default.
- W3185921853 cites W2964110616 @default.
- W3185921853 cites W2964199361 @default.
- W3185921853 cites W2964539095 @default.
- W3185921853 cites W2972384088 @default.
- W3185921853 cites W2972630480 @default.
- W3185921853 cites W2973215447 @default.
- W3185921853 cites W3004597053 @default.
- W3185921853 cites W3015537910 @default.
- W3185921853 cites W3045086295 @default.
- W3185921853 cites W3168770049 @default.
- W3185921853 cites W4233670287 @default.
- W3185921853 cites W4255111198 @default.
- W3185921853 doi "https://doi.org/10.1186/s13636-021-00217-4" @default.
- W3185921853 hasPublicationYear "2021" @default.
- W3185921853 type Work @default.
- W3185921853 sameAs 3185921853 @default.
- W3185921853 citedByCount "7" @default.
- W3185921853 countsByYear W31859218532022 @default.
- W3185921853 countsByYear W31859218532023 @default.
- W3185921853 crossrefType "journal-article" @default.
- W3185921853 hasAuthorship W3185921853A5031107943 @default.
- W3185921853 hasAuthorship W3185921853A5032257745 @default.
- W3185921853 hasAuthorship W3185921853A5069983774 @default.
- W3185921853 hasAuthorship W3185921853A5076669165 @default.
- W3185921853 hasBestOaLocation W31859218531 @default.
- W3185921853 hasConcept C108583219 @default.
- W3185921853 hasConcept C138885662 @default.
- W3185921853 hasConcept C154945302 @default.
- W3185921853 hasConcept C155635449 @default.
- W3185921853 hasConcept C179926584 @default.
- W3185921853 hasConcept C197424946 @default.
- W3185921853 hasConcept C199360897 @default.
- W3185921853 hasConcept C2778707766 @default.
- W3185921853 hasConcept C28490314 @default.
- W3185921853 hasConcept C41008148 @default.
- W3185921853 hasConcept C41895202 @default.
- W3185921853 hasConcept C43521106 @default.
- W3185921853 hasConcept C48103436 @default.
- W3185921853 hasConcept C49937458 @default.
- W3185921853 hasConcept C50644808 @default.
- W3185921853 hasConcept C54953205 @default.
- W3185921853 hasConcept C554190296 @default.
- W3185921853 hasConcept C61328038 @default.
- W3185921853 hasConcept C76155785 @default.
- W3185921853 hasConceptScore W3185921853C108583219 @default.
- W3185921853 hasConceptScore W3185921853C138885662 @default.
- W3185921853 hasConceptScore W3185921853C154945302 @default.
- W3185921853 hasConceptScore W3185921853C155635449 @default.