Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186007643> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3186007643 endingPage "1072" @default.
- W3186007643 startingPage "1062" @default.
- W3186007643 abstract "Transportation agencies should measure pavement performance to appropriately strategize road preservation, maintenance, and rehabilitation activities. The international roughness index (IRI), which is a means to quantify pavement roughness, is a primary performance indicator. Many attempts have been made to correlate pavement roughness to other pavement performance parameters. Most existing correlations, however, are based on traditional statistical regression, which requires a hypothesis for the data. In this study, a novel approach was developed to predict asphalt concrete (AC) pavement IRI, utilizing datasets extracted from the Long-Term Pavement Performance (LTPP) database. IRI prediction is categorized by two models: (i) IRI progression over the pavement’s service life without maintenance/rehabilitation and (ii) the drop in IRI after maintenance. The first model utilizes the recurrent neural network algorithm, which deals with time-series data. Therefore, historical traffic data, environmental information, and distress (rutting, fatigue cracking, and transverse cracking) measurements were extracted from the LTPP database. A long short-term memory network was used to solve the vanishing gradient problem. Finally, an optimal model was achieved by setting the sequence length to 2 years. The second model utilizes an artificial neural network algorithm to correlate the impacting factors to the IRI value after maintenance. The impacting factors include maintenance activities; initial (new construction), milled, and overlaid AC thicknesses; as well as IRI value before maintenance activities. Combining the two models allows for the prediction of IRI values over AC pavement’s service life." @default.
- W3186007643 created "2021-08-02" @default.
- W3186007643 creator A5039697105 @default.
- W3186007643 creator A5082827437 @default.
- W3186007643 creator A5086318834 @default.
- W3186007643 date "2021-07-24" @default.
- W3186007643 modified "2023-09-30" @default.
- W3186007643 title "Predicting Pavement Roughness Using Deep Learning Algorithms" @default.
- W3186007643 cites W1963630068 @default.
- W3186007643 cites W2003409057 @default.
- W3186007643 cites W2033791364 @default.
- W3186007643 cites W2064675550 @default.
- W3186007643 cites W2069949785 @default.
- W3186007643 cites W2127422279 @default.
- W3186007643 cites W2142801704 @default.
- W3186007643 cites W2547032137 @default.
- W3186007643 cites W2734775882 @default.
- W3186007643 cites W2904627439 @default.
- W3186007643 cites W2996355855 @default.
- W3186007643 cites W4235975339 @default.
- W3186007643 doi "https://doi.org/10.1177/03611981211023765" @default.
- W3186007643 hasPublicationYear "2021" @default.
- W3186007643 type Work @default.
- W3186007643 sameAs 3186007643 @default.
- W3186007643 citedByCount "12" @default.
- W3186007643 countsByYear W31860076432021 @default.
- W3186007643 countsByYear W31860076432022 @default.
- W3186007643 countsByYear W31860076432023 @default.
- W3186007643 crossrefType "journal-article" @default.
- W3186007643 hasAuthorship W3186007643A5039697105 @default.
- W3186007643 hasAuthorship W3186007643A5082827437 @default.
- W3186007643 hasAuthorship W3186007643A5086318834 @default.
- W3186007643 hasConcept C103208741 @default.
- W3186007643 hasConcept C11413529 @default.
- W3186007643 hasConcept C119857082 @default.
- W3186007643 hasConcept C127413603 @default.
- W3186007643 hasConcept C168056786 @default.
- W3186007643 hasConcept C200601418 @default.
- W3186007643 hasConcept C205649164 @default.
- W3186007643 hasConcept C22212356 @default.
- W3186007643 hasConcept C2780996376 @default.
- W3186007643 hasConcept C2781212230 @default.
- W3186007643 hasConcept C41008148 @default.
- W3186007643 hasConcept C50644808 @default.
- W3186007643 hasConcept C58640448 @default.
- W3186007643 hasConcept C66938386 @default.
- W3186007643 hasConcept C71039073 @default.
- W3186007643 hasConcept C76893819 @default.
- W3186007643 hasConcept C78519656 @default.
- W3186007643 hasConceptScore W3186007643C103208741 @default.
- W3186007643 hasConceptScore W3186007643C11413529 @default.
- W3186007643 hasConceptScore W3186007643C119857082 @default.
- W3186007643 hasConceptScore W3186007643C127413603 @default.
- W3186007643 hasConceptScore W3186007643C168056786 @default.
- W3186007643 hasConceptScore W3186007643C200601418 @default.
- W3186007643 hasConceptScore W3186007643C205649164 @default.
- W3186007643 hasConceptScore W3186007643C22212356 @default.
- W3186007643 hasConceptScore W3186007643C2780996376 @default.
- W3186007643 hasConceptScore W3186007643C2781212230 @default.
- W3186007643 hasConceptScore W3186007643C41008148 @default.
- W3186007643 hasConceptScore W3186007643C50644808 @default.
- W3186007643 hasConceptScore W3186007643C58640448 @default.
- W3186007643 hasConceptScore W3186007643C66938386 @default.
- W3186007643 hasConceptScore W3186007643C71039073 @default.
- W3186007643 hasConceptScore W3186007643C76893819 @default.
- W3186007643 hasConceptScore W3186007643C78519656 @default.
- W3186007643 hasIssue "11" @default.
- W3186007643 hasLocation W31860076431 @default.
- W3186007643 hasOpenAccess W3186007643 @default.
- W3186007643 hasPrimaryLocation W31860076431 @default.
- W3186007643 hasRelatedWork W1969755654 @default.
- W3186007643 hasRelatedWork W2032304735 @default.
- W3186007643 hasRelatedWork W2125779499 @default.
- W3186007643 hasRelatedWork W2332528340 @default.
- W3186007643 hasRelatedWork W2552210081 @default.
- W3186007643 hasRelatedWork W2973011457 @default.
- W3186007643 hasRelatedWork W3197855651 @default.
- W3186007643 hasRelatedWork W4214522640 @default.
- W3186007643 hasRelatedWork W4381614437 @default.
- W3186007643 hasRelatedWork W4386034060 @default.
- W3186007643 hasVolume "2675" @default.
- W3186007643 isParatext "false" @default.
- W3186007643 isRetracted "false" @default.
- W3186007643 magId "3186007643" @default.
- W3186007643 workType "article" @default.