Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186012988> ?p ?o ?g. }
- W3186012988 endingPage "209" @default.
- W3186012988 startingPage "194" @default.
- W3186012988 abstract "Optics-based nondestructive techniques have shown to produce corroborative and congruent results to traditional tests. Rapid, label-free, and quantitative spectroscopy can elucidate critical quality attributes when coupled to optical imaging and elastography for functional TEMPs. Multimodal nondestructive tools can be facilitated by miniaturizing the form factor of probes leading to holistic assessment of tissues and TEMPs. Fiber-coupled tools may be more amenable to coupling with other technologies as well as deployable aseptically for in-process and automated assessment of TEMPs while providing real-time feedback and quality control/assurance in scalable bioprocesses. There is an outstanding need for standards development that will enable the translation, increase safety and reliability, improve in-process efficiency, and decrease the overall costs of TEMPs biomanufacturing. Traditional destructive tests are used for quality assurance and control within manufacturing workflows. Their applicability to biomanufacturing is limited due to inherent constraints of the biomanufacturing process. To address this, photo- and acoustic-based nondestructive testing has risen in prominence to interrogate not only structure and function, but also to integrate quantitative measurements of biochemical composition to cross-correlate structural, compositional, and functional variances. We survey relevant literature related to single-mode and multimodal nondestructive testing of soft tissues, which adds numbers (quantitative measurements) to pictures (qualitative data). Native and tissue-engineered articular cartilage is highlighted because active biomanufacturing processes are being developed. Included are recent efforts and prominent trends focused on technologies for clinical and in-process biomanufacturing applications. Traditional destructive tests are used for quality assurance and control within manufacturing workflows. Their applicability to biomanufacturing is limited due to inherent constraints of the biomanufacturing process. To address this, photo- and acoustic-based nondestructive testing has risen in prominence to interrogate not only structure and function, but also to integrate quantitative measurements of biochemical composition to cross-correlate structural, compositional, and functional variances. We survey relevant literature related to single-mode and multimodal nondestructive testing of soft tissues, which adds numbers (quantitative measurements) to pictures (qualitative data). Native and tissue-engineered articular cartilage is highlighted because active biomanufacturing processes are being developed. Included are recent efforts and prominent trends focused on technologies for clinical and in-process biomanufacturing applications. nonlinear acoustic phenomenon that manifests itself as a nonzero force exerted by acoustic fields on particles. smooth, white tissue that covers the ends of bones where they come together to form joints. measure of optical anisotropy. It is defined as the maximum algebraic difference between two refractive indices measured in two perpendicular directions. an empirical spectroscopy technique that uses the inelastic scattering of light when it encounters acoustic phonons in a crystal (Brillouin scattering). The technique allows for the determination of elastic moduli of materials. an imaging-based method used to quantitatively measure the optical density of light-sensitive materials based on absorbance of specific wavelengths of energy. technique by which fluorescence lifetime is imaged. technique used to obtain the absorption of infrared radiation by the sample material. tests performed during a production process for the purpose of monitoring and, if necessary, to adjust the process to assure that the product conforms to its specifications. measurement of the wavelength and intensity of the absorption of near-infrared light by a sample. NIR light spans the 800– 500 nm (4000–12 500 cm-1) range and is energetic enough to excite overtones and combinations of molecular vibrations to higher energy levels. method or technique used to detect and evaluate quality attributes in a material or system with no interaction between the sensor and the sample. method to measure and display tissue elastic properties based on colocalization of doppler and optical coherence tomography imaging. imaging technique characterized by high spatial resolution and noninvasive subsurface detection. a tool consisting of an optical-fiber based OCT system and, in most cases, a microelectromechanical ultrasound transducer for colocalized optical and doppler imaging of bulk material properties. a degenerative joint disease affecting articular cartilage and, in severe cases, the underlying bone. an elastographic technique wherein doppler images of photoacoustic generated soundwaves are captured and interrogated to assess bulk material properties. hybrid imaging technology based on the photoacoustic effect. a vibrational spectroscopy technique based on inelastic light scattering (the Raman effect), which occurs when photons induce a change in the polarizability of molecules producing an optical fingerprint of the biomolecular constituents. The intensity of the measured Raman shifts is linearly proportional to the concentration of molecular constituents and can therefore be used to perform quantitative measurements. ratio of the speed of radiation (light) in one medium to that in another medium. the phenomenon that an input wave in a nonlinear material can generate a wave with twice the optical frequency. a medical product that repairs, modifies or regenerates the recipient’s cells, tissues, and organs or their structure and function, or both. a high-resolution visualization method of material characteristics and/or properties based on images acquired by various imaging modalities (e.g., OCT)." @default.
- W3186012988 created "2021-08-02" @default.
- W3186012988 creator A5001646095 @default.
- W3186012988 creator A5043516484 @default.
- W3186012988 creator A5069045302 @default.
- W3186012988 creator A5082324061 @default.
- W3186012988 date "2022-02-01" @default.
- W3186012988 modified "2023-10-17" @default.
- W3186012988 title "Nondestructive testing of native and tissue-engineered medical products: adding numbers to pictures" @default.
- W3186012988 cites W120157795 @default.
- W3186012988 cites W1459572188 @default.
- W3186012988 cites W1836821372 @default.
- W3186012988 cites W1939620430 @default.
- W3186012988 cites W1986992340 @default.
- W3186012988 cites W1990220228 @default.
- W3186012988 cites W1996841581 @default.
- W3186012988 cites W2010620072 @default.
- W3186012988 cites W2026605921 @default.
- W3186012988 cites W2027531163 @default.
- W3186012988 cites W2031144025 @default.
- W3186012988 cites W2035863052 @default.
- W3186012988 cites W2041244672 @default.
- W3186012988 cites W2051042953 @default.
- W3186012988 cites W2062044315 @default.
- W3186012988 cites W2071986963 @default.
- W3186012988 cites W2073709027 @default.
- W3186012988 cites W2081297598 @default.
- W3186012988 cites W2090732037 @default.
- W3186012988 cites W2105429489 @default.
- W3186012988 cites W2139060904 @default.
- W3186012988 cites W2159542600 @default.
- W3186012988 cites W2166149001 @default.
- W3186012988 cites W2170228119 @default.
- W3186012988 cites W2171029704 @default.
- W3186012988 cites W2281455009 @default.
- W3186012988 cites W2294568601 @default.
- W3186012988 cites W2387846178 @default.
- W3186012988 cites W2396031943 @default.
- W3186012988 cites W2517453663 @default.
- W3186012988 cites W2534671167 @default.
- W3186012988 cites W2556173822 @default.
- W3186012988 cites W2624972837 @default.
- W3186012988 cites W2745795007 @default.
- W3186012988 cites W2750980712 @default.
- W3186012988 cites W2752152381 @default.
- W3186012988 cites W2754897845 @default.
- W3186012988 cites W2768257360 @default.
- W3186012988 cites W2807588056 @default.
- W3186012988 cites W2809341467 @default.
- W3186012988 cites W2810919860 @default.
- W3186012988 cites W2811411524 @default.
- W3186012988 cites W2844026345 @default.
- W3186012988 cites W2884481470 @default.
- W3186012988 cites W2884959259 @default.
- W3186012988 cites W2897155053 @default.
- W3186012988 cites W2897415071 @default.
- W3186012988 cites W2898006103 @default.
- W3186012988 cites W2905708077 @default.
- W3186012988 cites W2908751723 @default.
- W3186012988 cites W2913612393 @default.
- W3186012988 cites W2920958381 @default.
- W3186012988 cites W2921758266 @default.
- W3186012988 cites W2924508737 @default.
- W3186012988 cites W2931829767 @default.
- W3186012988 cites W2942932992 @default.
- W3186012988 cites W2944587262 @default.
- W3186012988 cites W2949811889 @default.
- W3186012988 cites W2950232220 @default.
- W3186012988 cites W2951034441 @default.
- W3186012988 cites W2953542815 @default.
- W3186012988 cites W2959383975 @default.
- W3186012988 cites W2985615167 @default.
- W3186012988 cites W2985896406 @default.
- W3186012988 cites W2986928705 @default.
- W3186012988 cites W2995491766 @default.
- W3186012988 cites W3007737219 @default.
- W3186012988 cites W3011000913 @default.
- W3186012988 cites W3017574824 @default.
- W3186012988 cites W3040718936 @default.
- W3186012988 cites W3041118519 @default.
- W3186012988 cites W3107348039 @default.
- W3186012988 cites W3163863322 @default.
- W3186012988 doi "https://doi.org/10.1016/j.tibtech.2021.06.009" @default.
- W3186012988 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34315621" @default.
- W3186012988 hasPublicationYear "2022" @default.
- W3186012988 type Work @default.
- W3186012988 sameAs 3186012988 @default.
- W3186012988 citedByCount "7" @default.
- W3186012988 countsByYear W31860129882021 @default.
- W3186012988 countsByYear W31860129882022 @default.
- W3186012988 countsByYear W31860129882023 @default.
- W3186012988 crossrefType "journal-article" @default.
- W3186012988 hasAuthorship W3186012988A5001646095 @default.
- W3186012988 hasAuthorship W3186012988A5043516484 @default.
- W3186012988 hasAuthorship W3186012988A5069045302 @default.
- W3186012988 hasAuthorship W3186012988A5082324061 @default.
- W3186012988 hasBestOaLocation W31860129882 @default.
- W3186012988 hasConcept C106436119 @default.