Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186072751> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3186072751 abstract "Precipitation nowcasting aims to precisely predict the rainfall intensity in the near future that can be applied in various applications. A common approach is to simulate the complex physical processes or extrapolate the rainfall from the current stage. The existing deep learning model for this task uses an end-to-end network to forecast, but this approach has often met with limited success due to the complexities of the problem. Therefore, this paper proposes a novel hybrid model that combines the scientific method from meteorology and the deep learning method from computer science. We experimented with the model on both simulated data and radar images. Also, we have created the simulated data to imitate important features from radar images. The results show that our hybrid modeling approach outperforms all baselines on almost all datasets (both simulated and the radar data)." @default.
- W3186072751 created "2021-08-02" @default.
- W3186072751 creator A5022670353 @default.
- W3186072751 creator A5023264894 @default.
- W3186072751 creator A5032610152 @default.
- W3186072751 creator A5033865893 @default.
- W3186072751 creator A5048390065 @default.
- W3186072751 creator A5079543723 @default.
- W3186072751 date "2021-06-30" @default.
- W3186072751 modified "2023-10-16" @default.
- W3186072751 title "Incorporating Prior Scientific Knowledge Into Deep Learning for Precipitation Nowcasting on Radar Images" @default.
- W3186072751 cites W1578285471 @default.
- W3186072751 cites W2030459037 @default.
- W3186072751 cites W2177654209 @default.
- W3186072751 cites W2594928006 @default.
- W3186072751 cites W2890108942 @default.
- W3186072751 cites W2995511918 @default.
- W3186072751 cites W3014479278 @default.
- W3186072751 cites W4230214869 @default.
- W3186072751 cites W962117656 @default.
- W3186072751 doi "https://doi.org/10.1109/jcsse53117.2021.9493821" @default.
- W3186072751 hasPublicationYear "2021" @default.
- W3186072751 type Work @default.
- W3186072751 sameAs 3186072751 @default.
- W3186072751 citedByCount "2" @default.
- W3186072751 countsByYear W31860727512022 @default.
- W3186072751 crossrefType "proceedings-article" @default.
- W3186072751 hasAuthorship W3186072751A5022670353 @default.
- W3186072751 hasAuthorship W3186072751A5023264894 @default.
- W3186072751 hasAuthorship W3186072751A5032610152 @default.
- W3186072751 hasAuthorship W3186072751A5033865893 @default.
- W3186072751 hasAuthorship W3186072751A5048390065 @default.
- W3186072751 hasAuthorship W3186072751A5079543723 @default.
- W3186072751 hasConcept C107054158 @default.
- W3186072751 hasConcept C108583219 @default.
- W3186072751 hasConcept C10929652 @default.
- W3186072751 hasConcept C119857082 @default.
- W3186072751 hasConcept C124101348 @default.
- W3186072751 hasConcept C127313418 @default.
- W3186072751 hasConcept C127413603 @default.
- W3186072751 hasConcept C153294291 @default.
- W3186072751 hasConcept C154945302 @default.
- W3186072751 hasConcept C201995342 @default.
- W3186072751 hasConcept C205649164 @default.
- W3186072751 hasConcept C2780451532 @default.
- W3186072751 hasConcept C2781013037 @default.
- W3186072751 hasConcept C41008148 @default.
- W3186072751 hasConcept C554190296 @default.
- W3186072751 hasConcept C62649853 @default.
- W3186072751 hasConcept C76155785 @default.
- W3186072751 hasConceptScore W3186072751C107054158 @default.
- W3186072751 hasConceptScore W3186072751C108583219 @default.
- W3186072751 hasConceptScore W3186072751C10929652 @default.
- W3186072751 hasConceptScore W3186072751C119857082 @default.
- W3186072751 hasConceptScore W3186072751C124101348 @default.
- W3186072751 hasConceptScore W3186072751C127313418 @default.
- W3186072751 hasConceptScore W3186072751C127413603 @default.
- W3186072751 hasConceptScore W3186072751C153294291 @default.
- W3186072751 hasConceptScore W3186072751C154945302 @default.
- W3186072751 hasConceptScore W3186072751C201995342 @default.
- W3186072751 hasConceptScore W3186072751C205649164 @default.
- W3186072751 hasConceptScore W3186072751C2780451532 @default.
- W3186072751 hasConceptScore W3186072751C2781013037 @default.
- W3186072751 hasConceptScore W3186072751C41008148 @default.
- W3186072751 hasConceptScore W3186072751C554190296 @default.
- W3186072751 hasConceptScore W3186072751C62649853 @default.
- W3186072751 hasConceptScore W3186072751C76155785 @default.
- W3186072751 hasLocation W31860727511 @default.
- W3186072751 hasOpenAccess W3186072751 @default.
- W3186072751 hasPrimaryLocation W31860727511 @default.
- W3186072751 hasRelatedWork W2382246707 @default.
- W3186072751 hasRelatedWork W2385830913 @default.
- W3186072751 hasRelatedWork W3014300295 @default.
- W3186072751 hasRelatedWork W3097431378 @default.
- W3186072751 hasRelatedWork W4223943233 @default.
- W3186072751 hasRelatedWork W4225161397 @default.
- W3186072751 hasRelatedWork W4309045103 @default.
- W3186072751 hasRelatedWork W4312200629 @default.
- W3186072751 hasRelatedWork W4360585206 @default.
- W3186072751 hasRelatedWork W4364306694 @default.
- W3186072751 isParatext "false" @default.
- W3186072751 isRetracted "false" @default.
- W3186072751 magId "3186072751" @default.
- W3186072751 workType "article" @default.