Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186103791> ?p ?o ?g. }
- W3186103791 endingPage "549" @default.
- W3186103791 startingPage "539" @default.
- W3186103791 abstract "To enhance the image quality of oncology [18F]-FDG PET scans acquired in shorter times and reconstructed by faster algorithms using deep neural networks.List-mode data from 277 [18F]-FDG PET/CT scans, from six centres using GE Discovery PET/CT scanners, were split into ¾-, ½- and ¼-duration scans. Full-duration datasets were reconstructed using the convergent block sequential regularised expectation maximisation (BSREM) algorithm. Short-duration datasets were reconstructed with the faster OSEM algorithm. The 277 examinations were divided into training (n = 237), validation (n = 15) and testing (n = 25) sets. Three deep learning enhancement (DLE) models were trained to map full and partial-duration OSEM images into their target full-duration BSREM images. In addition to standardised uptake value (SUV) evaluations in lesions, liver and lungs, two experienced radiologists scored the quality of testing set images and BSREM in a blinded clinical reading (175 series).OSEM reconstructions demonstrated up to 22% difference in lesion SUVmax, for different scan durations, compared to full-duration BSREM. Application of the DLE models reduced this difference significantly for full-, ¾- and ½-duration scans, while simultaneously reducing the noise in the liver. The clinical reading showed that the standard DLE model with full- or ¾-duration scans provided an image quality substantially comparable to full-duration scans with BSREM reconstruction, yet in a shorter reconstruction time.Deep learning-based image enhancement models may allow a reduction in scan time (or injected activity) by up to 50%, and can decrease reconstruction time to a third, while maintaining image quality." @default.
- W3186103791 created "2021-08-02" @default.
- W3186103791 creator A5019788988 @default.
- W3186103791 creator A5026754221 @default.
- W3186103791 creator A5029559372 @default.
- W3186103791 creator A5045688766 @default.
- W3186103791 creator A5060989989 @default.
- W3186103791 creator A5063766109 @default.
- W3186103791 creator A5074966361 @default.
- W3186103791 creator A5077649666 @default.
- W3186103791 creator A5080907554 @default.
- W3186103791 creator A5082887117 @default.
- W3186103791 date "2021-07-28" @default.
- W3186103791 modified "2023-10-17" @default.
- W3186103791 title "Image enhancement of whole-body oncology [18F]-FDG PET scans using deep neural networks to reduce noise" @default.
- W3186103791 cites W1901129140 @default.
- W3186103791 cites W2021594562 @default.
- W3186103791 cites W2088783247 @default.
- W3186103791 cites W2133012565 @default.
- W3186103791 cites W2161249702 @default.
- W3186103791 cites W2195668156 @default.
- W3186103791 cites W2275859908 @default.
- W3186103791 cites W2611467245 @default.
- W3186103791 cites W2798538010 @default.
- W3186103791 cites W2958646971 @default.
- W3186103791 cites W2970280802 @default.
- W3186103791 cites W2974786312 @default.
- W3186103791 cites W2977432542 @default.
- W3186103791 cites W2995364088 @default.
- W3186103791 cites W3036117850 @default.
- W3186103791 cites W3037333647 @default.
- W3186103791 cites W3047729951 @default.
- W3186103791 cites W3082577495 @default.
- W3186103791 cites W3090688107 @default.
- W3186103791 cites W3111633653 @default.
- W3186103791 cites W3114089776 @default.
- W3186103791 cites W3126557061 @default.
- W3186103791 cites W3133816304 @default.
- W3186103791 cites W4225464078 @default.
- W3186103791 doi "https://doi.org/10.1007/s00259-021-05478-x" @default.
- W3186103791 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34318350" @default.
- W3186103791 hasPublicationYear "2021" @default.
- W3186103791 type Work @default.
- W3186103791 sameAs 3186103791 @default.
- W3186103791 citedByCount "25" @default.
- W3186103791 countsByYear W31861037912021 @default.
- W3186103791 countsByYear W31861037912022 @default.
- W3186103791 countsByYear W31861037912023 @default.
- W3186103791 crossrefType "journal-article" @default.
- W3186103791 hasAuthorship W3186103791A5019788988 @default.
- W3186103791 hasAuthorship W3186103791A5026754221 @default.
- W3186103791 hasAuthorship W3186103791A5029559372 @default.
- W3186103791 hasAuthorship W3186103791A5045688766 @default.
- W3186103791 hasAuthorship W3186103791A5060989989 @default.
- W3186103791 hasAuthorship W3186103791A5063766109 @default.
- W3186103791 hasAuthorship W3186103791A5074966361 @default.
- W3186103791 hasAuthorship W3186103791A5077649666 @default.
- W3186103791 hasAuthorship W3186103791A5080907554 @default.
- W3186103791 hasAuthorship W3186103791A5082887117 @default.
- W3186103791 hasBestOaLocation W31861037911 @default.
- W3186103791 hasConcept C108583219 @default.
- W3186103791 hasConcept C112758219 @default.
- W3186103791 hasConcept C115961682 @default.
- W3186103791 hasConcept C121332964 @default.
- W3186103791 hasConcept C141379421 @default.
- W3186103791 hasConcept C153180895 @default.
- W3186103791 hasConcept C154945302 @default.
- W3186103791 hasConcept C24890656 @default.
- W3186103791 hasConcept C2989005 @default.
- W3186103791 hasConcept C41008148 @default.
- W3186103791 hasConcept C55020928 @default.
- W3186103791 hasConcept C58489278 @default.
- W3186103791 hasConcept C71924100 @default.
- W3186103791 hasConceptScore W3186103791C108583219 @default.
- W3186103791 hasConceptScore W3186103791C112758219 @default.
- W3186103791 hasConceptScore W3186103791C115961682 @default.
- W3186103791 hasConceptScore W3186103791C121332964 @default.
- W3186103791 hasConceptScore W3186103791C141379421 @default.
- W3186103791 hasConceptScore W3186103791C153180895 @default.
- W3186103791 hasConceptScore W3186103791C154945302 @default.
- W3186103791 hasConceptScore W3186103791C24890656 @default.
- W3186103791 hasConceptScore W3186103791C2989005 @default.
- W3186103791 hasConceptScore W3186103791C41008148 @default.
- W3186103791 hasConceptScore W3186103791C55020928 @default.
- W3186103791 hasConceptScore W3186103791C58489278 @default.
- W3186103791 hasConceptScore W3186103791C71924100 @default.
- W3186103791 hasFunder F4320319985 @default.
- W3186103791 hasFunder F4320335087 @default.
- W3186103791 hasIssue "2" @default.
- W3186103791 hasLocation W31861037911 @default.
- W3186103791 hasLocation W31861037912 @default.
- W3186103791 hasLocation W31861037913 @default.
- W3186103791 hasLocation W31861037914 @default.
- W3186103791 hasOpenAccess W3186103791 @default.
- W3186103791 hasPrimaryLocation W31861037911 @default.
- W3186103791 hasRelatedWork W1963814553 @default.
- W3186103791 hasRelatedWork W1988158806 @default.
- W3186103791 hasRelatedWork W1995070803 @default.