Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186113181> ?p ?o ?g. }
- W3186113181 endingPage "116961" @default.
- W3186113181 startingPage "116961" @default.
- W3186113181 abstract "Surface tension is one of the most significant physicochemical characteristics in process design, industrial applications of heterogeneous systems, and scientific applications. To estimate the surface tension of ionic liquids, acquiring a reliable and accurate model is crucial since experimental measurements are costly and time-consuming. In this regard, the main objective of this study is to estimate the surface tension of ionic liquids (ILs) by utilizing two mathematical models based on the radial basis function (RBF) and least square-support vector machine (LSSVM), coupled with two optimization algorithms namely firefly algorithm (FFA) and differential evolution (DE). In this work, a huge experimental dataset including 1042 data points from 69 ILs was utilized. The dataset consists of surface tension and temperature over a range of 18.5–70.3 mN/m and 268.29–532.4 K, respectively, where the pressure is constant (0.101 MPa). The input parameters were chosen to be chemical structure and temperature, whereas the surface tension was the output parameter. Sensitivity analysis, statistical, and graphical error were used in order to evaluate the performance and accuracy of the proposed models. The results showed that the LSSVM-FFA model accurately predicts the surface tension of ILs with the percentage of average absolute relative deviation of 1.8440% and determination coefficient of 0.9828. The sensitivity analysis showed that surface tension is affected by some substrates such as NH2 and SO2 more dominantly compared to other substructures. Furthermore, statistical and graphical error analyses of the models developed in this study along with those obtained from the literature demonstrate that the LSSVM-FFA model significantly outperforms all the existing models in terms of accuracy and range of validity. Finally, conclusions drawn from understanding the impact of temperature on the surface tension using the proposed models reveals a declining surface tension with increasing temperature owing to the effect of intermolecular forces. The outcome of this study can help not only circumvent the challenges of predicting surface tension of ILs, but also establish modern and reliable predictive approaches for an extensive dataset over a wide range of temperatures." @default.
- W3186113181 created "2021-08-02" @default.
- W3186113181 creator A5000065373 @default.
- W3186113181 creator A5008248124 @default.
- W3186113181 creator A5009478558 @default.
- W3186113181 creator A5015950730 @default.
- W3186113181 creator A5033434857 @default.
- W3186113181 creator A5071677296 @default.
- W3186113181 creator A5091807952 @default.
- W3186113181 date "2021-11-01" @default.
- W3186113181 modified "2023-10-18" @default.
- W3186113181 title "Modeling surface tension of ionic liquids by chemical structure-intelligence based models" @default.
- W3186113181 cites W1412943762 @default.
- W3186113181 cites W1523741643 @default.
- W3186113181 cites W1595159159 @default.
- W3186113181 cites W1965720531 @default.
- W3186113181 cites W1968256727 @default.
- W3186113181 cites W1970976781 @default.
- W3186113181 cites W1972742805 @default.
- W3186113181 cites W1976568650 @default.
- W3186113181 cites W1981246595 @default.
- W3186113181 cites W1985426429 @default.
- W3186113181 cites W1989088468 @default.
- W3186113181 cites W1992785491 @default.
- W3186113181 cites W2000002666 @default.
- W3186113181 cites W2009663856 @default.
- W3186113181 cites W2010349331 @default.
- W3186113181 cites W2012589271 @default.
- W3186113181 cites W2013516386 @default.
- W3186113181 cites W2014862738 @default.
- W3186113181 cites W2016354419 @default.
- W3186113181 cites W2016726951 @default.
- W3186113181 cites W2017654129 @default.
- W3186113181 cites W2018315186 @default.
- W3186113181 cites W2019480298 @default.
- W3186113181 cites W2022383765 @default.
- W3186113181 cites W2022787516 @default.
- W3186113181 cites W2022857547 @default.
- W3186113181 cites W2032786895 @default.
- W3186113181 cites W2035728850 @default.
- W3186113181 cites W2038609111 @default.
- W3186113181 cites W2054730852 @default.
- W3186113181 cites W2056720590 @default.
- W3186113181 cites W2060904315 @default.
- W3186113181 cites W2065731028 @default.
- W3186113181 cites W2066987342 @default.
- W3186113181 cites W2070777465 @default.
- W3186113181 cites W2072709567 @default.
- W3186113181 cites W2072749640 @default.
- W3186113181 cites W2074349492 @default.
- W3186113181 cites W2081211043 @default.
- W3186113181 cites W2086086898 @default.
- W3186113181 cites W2087211788 @default.
- W3186113181 cites W2087296399 @default.
- W3186113181 cites W2093417226 @default.
- W3186113181 cites W2093421863 @default.
- W3186113181 cites W2102458228 @default.
- W3186113181 cites W2104159464 @default.
- W3186113181 cites W2107772757 @default.
- W3186113181 cites W2109102162 @default.
- W3186113181 cites W2119526175 @default.
- W3186113181 cites W2122250145 @default.
- W3186113181 cites W2133483122 @default.
- W3186113181 cites W2150676497 @default.
- W3186113181 cites W2151388232 @default.
- W3186113181 cites W2157474689 @default.
- W3186113181 cites W2160265822 @default.
- W3186113181 cites W2171084577 @default.
- W3186113181 cites W2312629661 @default.
- W3186113181 cites W2317833467 @default.
- W3186113181 cites W2327740537 @default.
- W3186113181 cites W2332598678 @default.
- W3186113181 cites W2553708505 @default.
- W3186113181 cites W2580163308 @default.
- W3186113181 cites W2605586869 @default.
- W3186113181 cites W2618598738 @default.
- W3186113181 cites W2791718738 @default.
- W3186113181 cites W2946296542 @default.
- W3186113181 cites W2949885582 @default.
- W3186113181 cites W2978295189 @default.
- W3186113181 cites W3023319571 @default.
- W3186113181 cites W3091912075 @default.
- W3186113181 cites W3109499434 @default.
- W3186113181 cites W3115910450 @default.
- W3186113181 doi "https://doi.org/10.1016/j.molliq.2021.116961" @default.
- W3186113181 hasPublicationYear "2021" @default.
- W3186113181 type Work @default.
- W3186113181 sameAs 3186113181 @default.
- W3186113181 citedByCount "20" @default.
- W3186113181 countsByYear W31861131812022 @default.
- W3186113181 countsByYear W31861131812023 @default.
- W3186113181 crossrefType "journal-article" @default.
- W3186113181 hasAuthorship W3186113181A5000065373 @default.
- W3186113181 hasAuthorship W3186113181A5008248124 @default.
- W3186113181 hasAuthorship W3186113181A5009478558 @default.
- W3186113181 hasAuthorship W3186113181A5015950730 @default.
- W3186113181 hasAuthorship W3186113181A5033434857 @default.
- W3186113181 hasAuthorship W3186113181A5071677296 @default.