Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186124197> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3186124197 endingPage "412" @default.
- W3186124197 startingPage "396" @default.
- W3186124197 abstract "A person’s sentiment is rigorously influenced by his emotional feelings which is evoked from every single incident, occurring every day in his surroundings. In this case, the decision that he makes is greatly affected by his sentiment rather than facts. Sentimental behavior can be applied to many applications in health, business, education, etc. This paper proposes and develops a sentimental behavior based on machine learning algorithms for pre-processing feature selection, and classification that helps identify, extract, quantify the feelings to twitter social dataset. Based on the Sentimental behavior, an analytical prediction has been developed that can be used to understand the behavior of the customers or users. Conducting the testing process for three state-of-the-art algorithms, the unique methodology is devised based on these proposed algorithms (support vector machine (SVM), logistic regression (LR), and XGboost), our extensive experiments show that our approach has high accuracy. Based on the testing results, the accurate sentimental behavior detection algorithm is identified and recommended to be used for textual data in the future." @default.
- W3186124197 created "2021-08-02" @default.
- W3186124197 creator A5011574113 @default.
- W3186124197 creator A5013606349 @default.
- W3186124197 creator A5045929043 @default.
- W3186124197 creator A5049024566 @default.
- W3186124197 creator A5051870498 @default.
- W3186124197 creator A5052758951 @default.
- W3186124197 date "2021-01-01" @default.
- W3186124197 modified "2023-10-06" @default.
- W3186124197 title "Analysis of Sentimental Behaviour over Social Data Using Machine Learning Algorithms" @default.
- W3186124197 cites W128386212 @default.
- W3186124197 cites W1608357024 @default.
- W3186124197 cites W2001587475 @default.
- W3186124197 cites W2171645516 @default.
- W3186124197 cites W2426446668 @default.
- W3186124197 cites W2481625746 @default.
- W3186124197 cites W2509509281 @default.
- W3186124197 cites W2768726319 @default.
- W3186124197 cites W2790832484 @default.
- W3186124197 cites W2805328437 @default.
- W3186124197 cites W2888005434 @default.
- W3186124197 cites W2922103104 @default.
- W3186124197 cites W4234259757 @default.
- W3186124197 doi "https://doi.org/10.1007/978-3-030-79457-6_34" @default.
- W3186124197 hasPublicationYear "2021" @default.
- W3186124197 type Work @default.
- W3186124197 sameAs 3186124197 @default.
- W3186124197 citedByCount "3" @default.
- W3186124197 countsByYear W31861241972021 @default.
- W3186124197 countsByYear W31861241972022 @default.
- W3186124197 countsByYear W31861241972023 @default.
- W3186124197 crossrefType "book-chapter" @default.
- W3186124197 hasAuthorship W3186124197A5011574113 @default.
- W3186124197 hasAuthorship W3186124197A5013606349 @default.
- W3186124197 hasAuthorship W3186124197A5045929043 @default.
- W3186124197 hasAuthorship W3186124197A5049024566 @default.
- W3186124197 hasAuthorship W3186124197A5051870498 @default.
- W3186124197 hasAuthorship W3186124197A5052758951 @default.
- W3186124197 hasConcept C111919701 @default.
- W3186124197 hasConcept C11413529 @default.
- W3186124197 hasConcept C119857082 @default.
- W3186124197 hasConcept C12267149 @default.
- W3186124197 hasConcept C122980154 @default.
- W3186124197 hasConcept C148483581 @default.
- W3186124197 hasConcept C151956035 @default.
- W3186124197 hasConcept C154945302 @default.
- W3186124197 hasConcept C15744967 @default.
- W3186124197 hasConcept C41008148 @default.
- W3186124197 hasConcept C66402592 @default.
- W3186124197 hasConcept C77805123 @default.
- W3186124197 hasConcept C98045186 @default.
- W3186124197 hasConceptScore W3186124197C111919701 @default.
- W3186124197 hasConceptScore W3186124197C11413529 @default.
- W3186124197 hasConceptScore W3186124197C119857082 @default.
- W3186124197 hasConceptScore W3186124197C12267149 @default.
- W3186124197 hasConceptScore W3186124197C122980154 @default.
- W3186124197 hasConceptScore W3186124197C148483581 @default.
- W3186124197 hasConceptScore W3186124197C151956035 @default.
- W3186124197 hasConceptScore W3186124197C154945302 @default.
- W3186124197 hasConceptScore W3186124197C15744967 @default.
- W3186124197 hasConceptScore W3186124197C41008148 @default.
- W3186124197 hasConceptScore W3186124197C66402592 @default.
- W3186124197 hasConceptScore W3186124197C77805123 @default.
- W3186124197 hasConceptScore W3186124197C98045186 @default.
- W3186124197 hasLocation W31861241971 @default.
- W3186124197 hasOpenAccess W3186124197 @default.
- W3186124197 hasPrimaryLocation W31861241971 @default.
- W3186124197 hasRelatedWork W2937631562 @default.
- W3186124197 hasRelatedWork W3105251098 @default.
- W3186124197 hasRelatedWork W3136979370 @default.
- W3186124197 hasRelatedWork W3194539120 @default.
- W3186124197 hasRelatedWork W3210877509 @default.
- W3186124197 hasRelatedWork W4205958290 @default.
- W3186124197 hasRelatedWork W4316658362 @default.
- W3186124197 hasRelatedWork W4361795583 @default.
- W3186124197 hasRelatedWork W2345184372 @default.
- W3186124197 hasRelatedWork W3202201951 @default.
- W3186124197 isParatext "false" @default.
- W3186124197 isRetracted "false" @default.
- W3186124197 magId "3186124197" @default.
- W3186124197 workType "book-chapter" @default.