Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186129726> ?p ?o ?g. }
- W3186129726 endingPage "107453" @default.
- W3186129726 startingPage "107453" @default.
- W3186129726 abstract "In deregulated electricity markets, reliable electricity market price forecasting is the foundation for making the bidding strategy, operating dispatch control, and hedging volatility risk. However, electricity prices are high-volatile, nonstationary, multi-seasonal, making it difficult to estimate future trends. This paper proposes a hybrid model integrating a deep learning model, feature extraction and feature selection method to forecast short-term electricity prices. In the proposed framework, the ensemble empirical mode decomposition (EEMD) filter is utilized for multi-dimensional sequences, solving hidden characteristic extraction problems. The constructed feature space is identified and ranked under the max-dependency and min-redundancy (MRMR) criterion, improving the accuracy of feature selection. Finally, combining EEMD and MRMR with bidirectional long short-term memory (BiLSTM), a new hybrid framework is designed to improve the efficiency of short-term electricity price forecasting. Case studies on the PJM and New South Wales electricity markets confirm that our model outperforms alternatives on the forecasting accuracy. The average mean absolute percentage error (MAPE) of the proposed model is reduced by 4% to 21% compared to state-of-the-art models for 1-h and 24-h ahead forecasting. The proposed model has achieved relatively higher stability and adaptability in different forecasting steps and can better capture sophisticated fluctuations in electricity prices." @default.
- W3186129726 created "2021-08-02" @default.
- W3186129726 creator A5003360183 @default.
- W3186129726 creator A5038003327 @default.
- W3186129726 creator A5067617335 @default.
- W3186129726 creator A5079142449 @default.
- W3186129726 creator A5079358224 @default.
- W3186129726 creator A5080398161 @default.
- W3186129726 date "2021-11-01" @default.
- W3186129726 modified "2023-10-15" @default.
- W3186129726 title "A feature extraction- and ranking-based framework for electricity spot price forecasting using a hybrid deep neural network" @default.
- W3186129726 cites W1977784344 @default.
- W3186129726 cites W1985594416 @default.
- W3186129726 cites W2008750647 @default.
- W3186129726 cites W2020078097 @default.
- W3186129726 cites W2025858245 @default.
- W3186129726 cites W2079735306 @default.
- W3186129726 cites W2089217930 @default.
- W3186129726 cites W2092939357 @default.
- W3186129726 cites W2093556803 @default.
- W3186129726 cites W2114193021 @default.
- W3186129726 cites W2120390927 @default.
- W3186129726 cites W2125014994 @default.
- W3186129726 cites W2145251512 @default.
- W3186129726 cites W2342107842 @default.
- W3186129726 cites W2401688955 @default.
- W3186129726 cites W2549776348 @default.
- W3186129726 cites W2585821407 @default.
- W3186129726 cites W2614198276 @default.
- W3186129726 cites W2729222988 @default.
- W3186129726 cites W2740001395 @default.
- W3186129726 cites W2799827709 @default.
- W3186129726 cites W2800437387 @default.
- W3186129726 cites W2801761896 @default.
- W3186129726 cites W2804243520 @default.
- W3186129726 cites W2885927405 @default.
- W3186129726 cites W2891229632 @default.
- W3186129726 cites W2895861596 @default.
- W3186129726 cites W2944900364 @default.
- W3186129726 cites W2948535221 @default.
- W3186129726 cites W2950877184 @default.
- W3186129726 cites W2963143906 @default.
- W3186129726 cites W2965751469 @default.
- W3186129726 cites W2969005134 @default.
- W3186129726 cites W2977155375 @default.
- W3186129726 cites W2984347565 @default.
- W3186129726 cites W2991137082 @default.
- W3186129726 cites W2991447108 @default.
- W3186129726 cites W2997320470 @default.
- W3186129726 cites W3003152171 @default.
- W3186129726 cites W3025194661 @default.
- W3186129726 cites W3025786140 @default.
- W3186129726 cites W3026349807 @default.
- W3186129726 cites W3029632564 @default.
- W3186129726 cites W3039339675 @default.
- W3186129726 cites W3046580686 @default.
- W3186129726 cites W3047136950 @default.
- W3186129726 cites W3086718919 @default.
- W3186129726 cites W3091096855 @default.
- W3186129726 cites W3112697087 @default.
- W3186129726 cites W3124309035 @default.
- W3186129726 doi "https://doi.org/10.1016/j.epsr.2021.107453" @default.
- W3186129726 hasPublicationYear "2021" @default.
- W3186129726 type Work @default.
- W3186129726 sameAs 3186129726 @default.
- W3186129726 citedByCount "17" @default.
- W3186129726 countsByYear W31861297262022 @default.
- W3186129726 countsByYear W31861297262023 @default.
- W3186129726 crossrefType "journal-article" @default.
- W3186129726 hasAuthorship W3186129726A5003360183 @default.
- W3186129726 hasAuthorship W3186129726A5038003327 @default.
- W3186129726 hasAuthorship W3186129726A5067617335 @default.
- W3186129726 hasAuthorship W3186129726A5079142449 @default.
- W3186129726 hasAuthorship W3186129726A5079358224 @default.
- W3186129726 hasAuthorship W3186129726A5080398161 @default.
- W3186129726 hasConcept C106131492 @default.
- W3186129726 hasConcept C119599485 @default.
- W3186129726 hasConcept C119857082 @default.
- W3186129726 hasConcept C127413603 @default.
- W3186129726 hasConcept C146733006 @default.
- W3186129726 hasConcept C148483581 @default.
- W3186129726 hasConcept C149782125 @default.
- W3186129726 hasConcept C150217764 @default.
- W3186129726 hasConcept C154945302 @default.
- W3186129726 hasConcept C162324750 @default.
- W3186129726 hasConcept C175444787 @default.
- W3186129726 hasConcept C206658404 @default.
- W3186129726 hasConcept C25570617 @default.
- W3186129726 hasConcept C2781104810 @default.
- W3186129726 hasConcept C31972630 @default.
- W3186129726 hasConcept C41008148 @default.
- W3186129726 hasConcept C50644808 @default.
- W3186129726 hasConcept C91602232 @default.
- W3186129726 hasConcept C9233905 @default.
- W3186129726 hasConceptScore W3186129726C106131492 @default.
- W3186129726 hasConceptScore W3186129726C119599485 @default.
- W3186129726 hasConceptScore W3186129726C119857082 @default.
- W3186129726 hasConceptScore W3186129726C127413603 @default.