Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186161759> ?p ?o ?g. }
- W3186161759 endingPage "467" @default.
- W3186161759 startingPage "444" @default.
- W3186161759 abstract "Purpose Since communication usually accounts as the foremost problem for power consumption, there are some approaches, such as topology control and network coding (NC), for diminishing the activity of sensors’ transceivers. If such approaches are employed simultaneously, then the overall performance does raise as expected. In a wireless sensor network (WSN), the linear NC has been shown to enhance the performance of network throughput and reduce delay. However, the NC condition of existing NC-aware routings may experience the issue of false-coding effect in some scenarios and usually neglect node energy, which highly affects the energy efficiency performance. The purpose of this paper is to propose a new NC scheduling in a WSN with the intention of maximizing the throughput and minimizing the energy consumption of the network. Design/methodology/approach The improved meta-heuristic algorithm called the improved mutation-based lion algorithm (IM-LA) is used to solve the problem of NC scheduling in a WSN. The main intention of implementing improved optimization is to maximize the throughput and minimize the energy consumption of the network during the transmission from the source to the destination node. The parameters like topology and time slots are taken for optimizing in order to obtain the concerned objective function. While solving the current optimization problem, it has considered a few constraints like timeshare constraint, data-flow constraint and domain constraint. Thus, the network performance is proved to be enhanced by the proposed model when compared to the conventional model. Findings When 20 nodes are fixed for the convergence analysis, performed in terms of multi-objective function, it is noted that during the 400th iteration, the proposed IM-LA was 10.34, 13.91 and 50% better than gray wolf algorithm (GWO), firefly algorithm (FF) and particle swarm optimization (PSO), respectively, and same as LA. Therefore, it is concluded that the proposed IM-LA performs extremely better than other conventional methods in minimizing the cost function, and hence, the optimal scheduling of nodes in a WSN in terms of the multi-objective function, i.e. minimizing energy consumption and maximizing throughput using NC has been successfully done. Originality/value This paper adopts the latest optimization algorithm called IM-LA, which is used to solve the problem of network coding scheduling in a WSN. This is the first work that utilizes IM-LA for optimal network coding in a WSN." @default.
- W3186161759 created "2021-08-02" @default.
- W3186161759 creator A5016346010 @default.
- W3186161759 creator A5046857178 @default.
- W3186161759 creator A5066279248 @default.
- W3186161759 date "2021-07-20" @default.
- W3186161759 modified "2023-09-25" @default.
- W3186161759 title "Enhancement of network coding in wireless sensor network using improved lion algorithm: intention toward maximizing network throughput and lifetime" @default.
- W3186161759 cites W1575671689 @default.
- W3186161759 cites W1966870084 @default.
- W3186161759 cites W1973997930 @default.
- W3186161759 cites W1994311938 @default.
- W3186161759 cites W2003377035 @default.
- W3186161759 cites W2014700559 @default.
- W3186161759 cites W2045133904 @default.
- W3186161759 cites W2046497867 @default.
- W3186161759 cites W2061438946 @default.
- W3186161759 cites W2063359569 @default.
- W3186161759 cites W2077913352 @default.
- W3186161759 cites W2091133990 @default.
- W3186161759 cites W2119921449 @default.
- W3186161759 cites W2121792275 @default.
- W3186161759 cites W2130403046 @default.
- W3186161759 cites W2144256528 @default.
- W3186161759 cites W2149863032 @default.
- W3186161759 cites W2243041172 @default.
- W3186161759 cites W2271998540 @default.
- W3186161759 cites W2283605836 @default.
- W3186161759 cites W2519906635 @default.
- W3186161759 cites W2568242273 @default.
- W3186161759 cites W2891064068 @default.
- W3186161759 cites W2922804401 @default.
- W3186161759 cites W3122535031 @default.
- W3186161759 cites W3138817803 @default.
- W3186161759 doi "https://doi.org/10.1108/ijius-02-2021-0007" @default.
- W3186161759 hasPublicationYear "2021" @default.
- W3186161759 type Work @default.
- W3186161759 sameAs 3186161759 @default.
- W3186161759 citedByCount "0" @default.
- W3186161759 crossrefType "journal-article" @default.
- W3186161759 hasAuthorship W3186161759A5016346010 @default.
- W3186161759 hasAuthorship W3186161759A5046857178 @default.
- W3186161759 hasAuthorship W3186161759A5066279248 @default.
- W3186161759 hasConcept C107568181 @default.
- W3186161759 hasConcept C11413529 @default.
- W3186161759 hasConcept C119599485 @default.
- W3186161759 hasConcept C120314980 @default.
- W3186161759 hasConcept C126255220 @default.
- W3186161759 hasConcept C127413603 @default.
- W3186161759 hasConcept C138293262 @default.
- W3186161759 hasConcept C157764524 @default.
- W3186161759 hasConcept C158379750 @default.
- W3186161759 hasConcept C175893541 @default.
- W3186161759 hasConcept C199845137 @default.
- W3186161759 hasConcept C203274722 @default.
- W3186161759 hasConcept C206729178 @default.
- W3186161759 hasConcept C24590314 @default.
- W3186161759 hasConcept C2780165032 @default.
- W3186161759 hasConcept C29722447 @default.
- W3186161759 hasConcept C31258907 @default.
- W3186161759 hasConcept C33923547 @default.
- W3186161759 hasConcept C41008148 @default.
- W3186161759 hasConcept C5119721 @default.
- W3186161759 hasConcept C555944384 @default.
- W3186161759 hasConcept C76155785 @default.
- W3186161759 hasConceptScore W3186161759C107568181 @default.
- W3186161759 hasConceptScore W3186161759C11413529 @default.
- W3186161759 hasConceptScore W3186161759C119599485 @default.
- W3186161759 hasConceptScore W3186161759C120314980 @default.
- W3186161759 hasConceptScore W3186161759C126255220 @default.
- W3186161759 hasConceptScore W3186161759C127413603 @default.
- W3186161759 hasConceptScore W3186161759C138293262 @default.
- W3186161759 hasConceptScore W3186161759C157764524 @default.
- W3186161759 hasConceptScore W3186161759C158379750 @default.
- W3186161759 hasConceptScore W3186161759C175893541 @default.
- W3186161759 hasConceptScore W3186161759C199845137 @default.
- W3186161759 hasConceptScore W3186161759C203274722 @default.
- W3186161759 hasConceptScore W3186161759C206729178 @default.
- W3186161759 hasConceptScore W3186161759C24590314 @default.
- W3186161759 hasConceptScore W3186161759C2780165032 @default.
- W3186161759 hasConceptScore W3186161759C29722447 @default.
- W3186161759 hasConceptScore W3186161759C31258907 @default.
- W3186161759 hasConceptScore W3186161759C33923547 @default.
- W3186161759 hasConceptScore W3186161759C41008148 @default.
- W3186161759 hasConceptScore W3186161759C5119721 @default.
- W3186161759 hasConceptScore W3186161759C555944384 @default.
- W3186161759 hasConceptScore W3186161759C76155785 @default.
- W3186161759 hasIssue "4" @default.
- W3186161759 hasLocation W31861617591 @default.
- W3186161759 hasOpenAccess W3186161759 @default.
- W3186161759 hasPrimaryLocation W31861617591 @default.
- W3186161759 hasRelatedWork W1882733036 @default.
- W3186161759 hasRelatedWork W1992741870 @default.
- W3186161759 hasRelatedWork W2067775143 @default.
- W3186161759 hasRelatedWork W2125054934 @default.
- W3186161759 hasRelatedWork W2140624114 @default.
- W3186161759 hasRelatedWork W2160425906 @default.
- W3186161759 hasRelatedWork W2354721825 @default.