Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186165927> ?p ?o ?g. }
- W3186165927 endingPage "9" @default.
- W3186165927 startingPage "9" @default.
- W3186165927 abstract "This paper presents a fully Bayesian approach for lifetime prediction of anautomotive fleet using real workshop-service data as input. Fleet lifetime prediction is an important issue for the decision-making process in the automotive industry. For instance, fleet lifetime prediction assists engineering teams in monitoring their products under real-life conditions in the field. Furthermore, it provides future cost-projections to the board which thereupon can guide financial support effectively to research and development projects.Also, fleet lifetime prediction plays a key-role in planning spare part pre-production to enable early closing of current productions lines in favor of re-configuring them for new products.The paper explores a problem instance containing more than 170,000 individual vehicles driving in 100 different countries exhibiting a certain failure, pre-selected for this study. The shape of the corresponding lifetime distribution suggests the presence of at least two different mechanisms that lead to failure. This behavior has to be taken into account in the lifetime prediction model, i.e., simple models were not sufficient to describe the lifetime accurately,but more complex mixture models had to be utilized.The suggested lifetime estimator consists of a combination of two probabilistic models. For a given point in time in the future, the first model predicts the effective age of each individual of the fleet. The second model attempts to forecast the total number of failures that will arise for the entire fleet. Both probabilistic models are fully Bayesian, i.e., all parameters of the models are implemented as probability distributions and computations are solely performed on distributions rather than on summarizing statistics. Thus, the predictive output of a Bayesian model is not a point estimate butagain a probability distribution, the so-called posterior predictive distribution (PPD). As a consequence, uncertainty of the predictions is made accessible in a very natural way and can be taken into account in the decision-making processexplicitly. As will be shown in the paper, working with the PPD becomes especially important, or even indispensable, when dealing with decision-making cost-functions that are not symmetric." @default.
- W3186165927 created "2021-08-02" @default.
- W3186165927 creator A5013696466 @default.
- W3186165927 creator A5022367601 @default.
- W3186165927 creator A5046915891 @default.
- W3186165927 creator A5053945296 @default.
- W3186165927 creator A5066724564 @default.
- W3186165927 date "2021-06-29" @default.
- W3186165927 modified "2023-10-07" @default.
- W3186165927 title "Bayesian Vehicle Fleet Survival Analysis based onWorkshop-Service Data" @default.
- W3186165927 doi "https://doi.org/10.36001/phme.2021.v6i1.2842" @default.
- W3186165927 hasPublicationYear "2021" @default.
- W3186165927 type Work @default.
- W3186165927 sameAs 3186165927 @default.
- W3186165927 citedByCount "0" @default.
- W3186165927 crossrefType "journal-article" @default.
- W3186165927 hasAuthorship W3186165927A5013696466 @default.
- W3186165927 hasAuthorship W3186165927A5022367601 @default.
- W3186165927 hasAuthorship W3186165927A5046915891 @default.
- W3186165927 hasAuthorship W3186165927A5053945296 @default.
- W3186165927 hasAuthorship W3186165927A5066724564 @default.
- W3186165927 hasConcept C105795698 @default.
- W3186165927 hasConcept C107673813 @default.
- W3186165927 hasConcept C111919701 @default.
- W3186165927 hasConcept C114289077 @default.
- W3186165927 hasConcept C121332964 @default.
- W3186165927 hasConcept C127413603 @default.
- W3186165927 hasConcept C136264566 @default.
- W3186165927 hasConcept C146978453 @default.
- W3186165927 hasConcept C154945302 @default.
- W3186165927 hasConcept C162324750 @default.
- W3186165927 hasConcept C163258240 @default.
- W3186165927 hasConcept C17744445 @default.
- W3186165927 hasConcept C185429906 @default.
- W3186165927 hasConcept C194648553 @default.
- W3186165927 hasConcept C199539241 @default.
- W3186165927 hasConcept C202444582 @default.
- W3186165927 hasConcept C21547014 @default.
- W3186165927 hasConcept C26517878 @default.
- W3186165927 hasConcept C2777305159 @default.
- W3186165927 hasConcept C2778775528 @default.
- W3186165927 hasConcept C2780378061 @default.
- W3186165927 hasConcept C33923547 @default.
- W3186165927 hasConcept C38652104 @default.
- W3186165927 hasConcept C41008148 @default.
- W3186165927 hasConcept C42475967 @default.
- W3186165927 hasConcept C43214815 @default.
- W3186165927 hasConcept C49937458 @default.
- W3186165927 hasConcept C526921623 @default.
- W3186165927 hasConcept C62520636 @default.
- W3186165927 hasConcept C76155785 @default.
- W3186165927 hasConcept C9652623 @default.
- W3186165927 hasConcept C98045186 @default.
- W3186165927 hasConceptScore W3186165927C105795698 @default.
- W3186165927 hasConceptScore W3186165927C107673813 @default.
- W3186165927 hasConceptScore W3186165927C111919701 @default.
- W3186165927 hasConceptScore W3186165927C114289077 @default.
- W3186165927 hasConceptScore W3186165927C121332964 @default.
- W3186165927 hasConceptScore W3186165927C127413603 @default.
- W3186165927 hasConceptScore W3186165927C136264566 @default.
- W3186165927 hasConceptScore W3186165927C146978453 @default.
- W3186165927 hasConceptScore W3186165927C154945302 @default.
- W3186165927 hasConceptScore W3186165927C162324750 @default.
- W3186165927 hasConceptScore W3186165927C163258240 @default.
- W3186165927 hasConceptScore W3186165927C17744445 @default.
- W3186165927 hasConceptScore W3186165927C185429906 @default.
- W3186165927 hasConceptScore W3186165927C194648553 @default.
- W3186165927 hasConceptScore W3186165927C199539241 @default.
- W3186165927 hasConceptScore W3186165927C202444582 @default.
- W3186165927 hasConceptScore W3186165927C21547014 @default.
- W3186165927 hasConceptScore W3186165927C26517878 @default.
- W3186165927 hasConceptScore W3186165927C2777305159 @default.
- W3186165927 hasConceptScore W3186165927C2778775528 @default.
- W3186165927 hasConceptScore W3186165927C2780378061 @default.
- W3186165927 hasConceptScore W3186165927C33923547 @default.
- W3186165927 hasConceptScore W3186165927C38652104 @default.
- W3186165927 hasConceptScore W3186165927C41008148 @default.
- W3186165927 hasConceptScore W3186165927C42475967 @default.
- W3186165927 hasConceptScore W3186165927C43214815 @default.
- W3186165927 hasConceptScore W3186165927C49937458 @default.
- W3186165927 hasConceptScore W3186165927C526921623 @default.
- W3186165927 hasConceptScore W3186165927C62520636 @default.
- W3186165927 hasConceptScore W3186165927C76155785 @default.
- W3186165927 hasConceptScore W3186165927C9652623 @default.
- W3186165927 hasConceptScore W3186165927C98045186 @default.
- W3186165927 hasIssue "1" @default.
- W3186165927 hasLocation W31861659271 @default.
- W3186165927 hasOpenAccess W3186165927 @default.
- W3186165927 hasPrimaryLocation W31861659271 @default.
- W3186165927 hasRelatedWork W126612700 @default.
- W3186165927 hasRelatedWork W1967176703 @default.
- W3186165927 hasRelatedWork W2037868820 @default.
- W3186165927 hasRelatedWork W2095127188 @default.
- W3186165927 hasRelatedWork W2165743571 @default.
- W3186165927 hasRelatedWork W2207443604 @default.
- W3186165927 hasRelatedWork W2415278869 @default.
- W3186165927 hasRelatedWork W2574468626 @default.
- W3186165927 hasRelatedWork W2602347577 @default.