Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186167837> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3186167837 endingPage "83" @default.
- W3186167837 startingPage "83" @default.
- W3186167837 abstract "Introduction: Early detection breast cancer Causes it most curable cancer in among other types of cancer, early detection and accurate examination for breast cancer ensures an extended survival rate of the patients. Risk factors are an important parameter in breast cancer has an important effect on breast cancer. Data mining techniques have a growing reputation in the medical field because of high predictive capability and useful classification. These methods can help practitioners to develop tools that allow detecting the early stages of breast cancer.Material and Methods: The database used in this paper is provided by Motamed Cancer Institute, ACECR Tehran, Iran. It contains of 7834 records of breast cancer patients clinical and risk factors data. There were 4008 patients (52.4%) with breast cancers (malignant) and the remaining 3617 patients (47.6%) without breast cancers (benign). Support vector machine, multi-layer perceptron, decision tree, K nearest neighbor, random forest, naïve Bayesian models were developed using 20 fields (risk factor) of the database because database feature was restrictions. Used 10-fold crossover for models evaluate. Ultimately, the comparison of the models was made based on sensitivity, specificity and accuracy indicators.Results: Naïve Bayesian and artificial neural network are better models for the prediction of breast cancer risks. Naïve Bayesian had accuracy of 93%, specificity of 93.32%, sensitivity of 95056%, ROC of 0.95 and artificial neural network had accuracy of 93.23%, specificity of 91.98%, sensitivity of 92.69%, and ROC of 0.8.Conclusion: Strangely the different artificial intelligent calculations utilized in this examination yielded close precision subsequently these techniques could be utilized as option prescient instruments in the bosom malignancy risk considers. The significant prognostic components affecting risk pace of bosom disease distinguished in this investigation, which were approved by risk, are helpful and could be converted into choice help devices in the clinical area." @default.
- W3186167837 created "2021-08-02" @default.
- W3186167837 creator A5008190274 @default.
- W3186167837 creator A5062920332 @default.
- W3186167837 date "2021-07-25" @default.
- W3186167837 modified "2023-10-16" @default.
- W3186167837 title "Performance Analysis of Data Mining Techniques for the Prediction Breast Cancer Risk on Big Data" @default.
- W3186167837 doi "https://doi.org/10.30699/fhi.v10i1.296" @default.
- W3186167837 hasPublicationYear "2021" @default.
- W3186167837 type Work @default.
- W3186167837 sameAs 3186167837 @default.
- W3186167837 citedByCount "1" @default.
- W3186167837 countsByYear W31861678372022 @default.
- W3186167837 crossrefType "journal-article" @default.
- W3186167837 hasAuthorship W3186167837A5008190274 @default.
- W3186167837 hasAuthorship W3186167837A5062920332 @default.
- W3186167837 hasBestOaLocation W31861678371 @default.
- W3186167837 hasConcept C119857082 @default.
- W3186167837 hasConcept C121608353 @default.
- W3186167837 hasConcept C12267149 @default.
- W3186167837 hasConcept C124101348 @default.
- W3186167837 hasConcept C126322002 @default.
- W3186167837 hasConcept C127413603 @default.
- W3186167837 hasConcept C154945302 @default.
- W3186167837 hasConcept C169258074 @default.
- W3186167837 hasConcept C179717631 @default.
- W3186167837 hasConcept C21200559 @default.
- W3186167837 hasConcept C24326235 @default.
- W3186167837 hasConcept C41008148 @default.
- W3186167837 hasConcept C50644808 @default.
- W3186167837 hasConcept C52001869 @default.
- W3186167837 hasConcept C530470458 @default.
- W3186167837 hasConcept C60908668 @default.
- W3186167837 hasConcept C71924100 @default.
- W3186167837 hasConcept C84525736 @default.
- W3186167837 hasConceptScore W3186167837C119857082 @default.
- W3186167837 hasConceptScore W3186167837C121608353 @default.
- W3186167837 hasConceptScore W3186167837C12267149 @default.
- W3186167837 hasConceptScore W3186167837C124101348 @default.
- W3186167837 hasConceptScore W3186167837C126322002 @default.
- W3186167837 hasConceptScore W3186167837C127413603 @default.
- W3186167837 hasConceptScore W3186167837C154945302 @default.
- W3186167837 hasConceptScore W3186167837C169258074 @default.
- W3186167837 hasConceptScore W3186167837C179717631 @default.
- W3186167837 hasConceptScore W3186167837C21200559 @default.
- W3186167837 hasConceptScore W3186167837C24326235 @default.
- W3186167837 hasConceptScore W3186167837C41008148 @default.
- W3186167837 hasConceptScore W3186167837C50644808 @default.
- W3186167837 hasConceptScore W3186167837C52001869 @default.
- W3186167837 hasConceptScore W3186167837C530470458 @default.
- W3186167837 hasConceptScore W3186167837C60908668 @default.
- W3186167837 hasConceptScore W3186167837C71924100 @default.
- W3186167837 hasConceptScore W3186167837C84525736 @default.
- W3186167837 hasIssue "1" @default.
- W3186167837 hasLocation W31861678371 @default.
- W3186167837 hasLocation W31861678372 @default.
- W3186167837 hasOpenAccess W3186167837 @default.
- W3186167837 hasPrimaryLocation W31861678371 @default.
- W3186167837 hasRelatedWork W2979979539 @default.
- W3186167837 hasRelatedWork W3127425528 @default.
- W3186167837 hasRelatedWork W3168994312 @default.
- W3186167837 hasRelatedWork W3211546796 @default.
- W3186167837 hasRelatedWork W4200196661 @default.
- W3186167837 hasRelatedWork W4205958290 @default.
- W3186167837 hasRelatedWork W4280611221 @default.
- W3186167837 hasRelatedWork W4283784365 @default.
- W3186167837 hasRelatedWork W4294067781 @default.
- W3186167837 hasRelatedWork W4316082230 @default.
- W3186167837 hasVolume "10" @default.
- W3186167837 isParatext "false" @default.
- W3186167837 isRetracted "false" @default.
- W3186167837 magId "3186167837" @default.
- W3186167837 workType "article" @default.