Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186179974> ?p ?o ?g. }
- W3186179974 abstract "Current methods for measuring the chronic rates of cognitive decline and degeneration in Alzheimer's disease rely on the sensitivity of longitudinal neuropsychological batteries and clinical neuroimaging, particularly structural magnetic resonance imaging of brain atrophy, either at a global or regional scale. There is particular interest in approaches predictive of future disease progression and clinical outcomes using a single time point. If successful, such approaches could have great impact on differential diagnosis, therapeutic treatment and clinical trial inclusion. Unfortunately, it has proven quite challenging to accurately predict clinical and degeneration progression rates from baseline data. Specifically, a key limitation of the previously proposed approaches for disease progression based on the brain atrophy measures has been the limited incorporation of the knowledge from disease pathology progression models, which suggest a prion-like spread of disease pathology and hence the neurodegeneration. Here, we present a new metric for disease progression rate in Alzheimer that uses only MRI-derived atrophy data yet is able to infer the underlying rate of pathology transmission. This is enabled by imposing a spread process driven by the brain networks using a Network Diffusion Model. We first fit this model to each patient's longitudinal brain atrophy data defined on a brain network structure to estimate a patient-specific rate of pathology diffusion, called the pathology progression rate. Using machine learning algorithms, we then build a baseline data model and tested this rate metric on data from longitudinal Alzheimer's Disease Neuroimaging Initiative study including 810 subjects. Our measure of disease progression differed significantly across diagnostic groups as well as between groups with different genetic risk factors. Remarkably, hierarchical clustering revealed 3 distinct clusters based on CSF profiles with >90% accuracy. These pathological clusters exhibit progressive atrophy and clinical impairments that correspond to the proposed rate measure. We demonstrate that a subject's degeneration speed can be best predicted from baseline neuroimaging volumetrics and fluid biomarkers for subjects in the middle of their degenerative course, which may be a practical, inexpensive screening tool for future prognostic applications." @default.
- W3186179974 created "2021-08-02" @default.
- W3186179974 creator A5009052142 @default.
- W3186179974 creator A5028325717 @default.
- W3186179974 creator A5057853310 @default.
- W3186179974 date "2021-01-01" @default.
- W3186179974 modified "2023-10-16" @default.
- W3186179974 title "Network-constrained technique to characterize pathology progression rate in Alzheimer’s disease" @default.
- W3186179974 cites W1964472291 @default.
- W3186179974 cites W1974300727 @default.
- W3186179974 cites W1979276595 @default.
- W3186179974 cites W1980842500 @default.
- W3186179974 cites W1986400971 @default.
- W3186179974 cites W1989217296 @default.
- W3186179974 cites W1991600017 @default.
- W3186179974 cites W1993571512 @default.
- W3186179974 cites W2004185979 @default.
- W3186179974 cites W2006096283 @default.
- W3186179974 cites W2011637489 @default.
- W3186179974 cites W2014897304 @default.
- W3186179974 cites W2016787780 @default.
- W3186179974 cites W2022956101 @default.
- W3186179974 cites W2030096042 @default.
- W3186179974 cites W2033385005 @default.
- W3186179974 cites W2034147064 @default.
- W3186179974 cites W2035680108 @default.
- W3186179974 cites W2041282815 @default.
- W3186179974 cites W2060240841 @default.
- W3186179974 cites W2060492349 @default.
- W3186179974 cites W2066977853 @default.
- W3186179974 cites W2069504513 @default.
- W3186179974 cites W2075193321 @default.
- W3186179974 cites W2087011519 @default.
- W3186179974 cites W2087924155 @default.
- W3186179974 cites W2089691915 @default.
- W3186179974 cites W2096890121 @default.
- W3186179974 cites W2100377941 @default.
- W3186179974 cites W2108323654 @default.
- W3186179974 cites W2115017507 @default.
- W3186179974 cites W2116290762 @default.
- W3186179974 cites W2120320261 @default.
- W3186179974 cites W2120895215 @default.
- W3186179974 cites W2129823286 @default.
- W3186179974 cites W2146788881 @default.
- W3186179974 cites W2159123476 @default.
- W3186179974 cites W2165840723 @default.
- W3186179974 cites W2167840686 @default.
- W3186179974 cites W2311427096 @default.
- W3186179974 cites W2324660492 @default.
- W3186179974 cites W2339392274 @default.
- W3186179974 cites W2587211682 @default.
- W3186179974 cites W2594595110 @default.
- W3186179974 cites W2606502436 @default.
- W3186179974 cites W2747606126 @default.
- W3186179974 cites W2779111914 @default.
- W3186179974 cites W2782253995 @default.
- W3186179974 cites W2789808163 @default.
- W3186179974 cites W2791831001 @default.
- W3186179974 cites W2792565280 @default.
- W3186179974 cites W2921249215 @default.
- W3186179974 cites W2951001090 @default.
- W3186179974 cites W2980552311 @default.
- W3186179974 cites W3007465749 @default.
- W3186179974 cites W3035220500 @default.
- W3186179974 cites W3184801616 @default.
- W3186179974 doi "https://doi.org/10.1093/braincomms/fcab144" @default.
- W3186179974 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8376686" @default.
- W3186179974 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34704025" @default.
- W3186179974 hasPublicationYear "2021" @default.
- W3186179974 type Work @default.
- W3186179974 sameAs 3186179974 @default.
- W3186179974 citedByCount "2" @default.
- W3186179974 countsByYear W31861799742023 @default.
- W3186179974 crossrefType "journal-article" @default.
- W3186179974 hasAuthorship W3186179974A5009052142 @default.
- W3186179974 hasAuthorship W3186179974A5028325717 @default.
- W3186179974 hasAuthorship W3186179974A5057853310 @default.
- W3186179974 hasBestOaLocation W31861799741 @default.
- W3186179974 hasConcept C14216870 @default.
- W3186179974 hasConcept C142724271 @default.
- W3186179974 hasConcept C15744967 @default.
- W3186179974 hasConcept C169760540 @default.
- W3186179974 hasConcept C169900460 @default.
- W3186179974 hasConcept C2778373026 @default.
- W3186179974 hasConcept C2779134260 @default.
- W3186179974 hasConcept C2781172350 @default.
- W3186179974 hasConcept C502032728 @default.
- W3186179974 hasConcept C58693492 @default.
- W3186179974 hasConcept C71924100 @default.
- W3186179974 hasConceptScore W3186179974C14216870 @default.
- W3186179974 hasConceptScore W3186179974C142724271 @default.
- W3186179974 hasConceptScore W3186179974C15744967 @default.
- W3186179974 hasConceptScore W3186179974C169760540 @default.
- W3186179974 hasConceptScore W3186179974C169900460 @default.
- W3186179974 hasConceptScore W3186179974C2778373026 @default.
- W3186179974 hasConceptScore W3186179974C2779134260 @default.
- W3186179974 hasConceptScore W3186179974C2781172350 @default.
- W3186179974 hasConceptScore W3186179974C502032728 @default.
- W3186179974 hasConceptScore W3186179974C58693492 @default.
- W3186179974 hasConceptScore W3186179974C71924100 @default.