Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186181424> ?p ?o ?g. }
- W3186181424 abstract "Abstract Coherent diffraction imaging enables the imaging of individual defects, such as dislocations or stacking faults, in materials. These defects and their surrounding elastic strain fields have a critical influence on the macroscopic properties and functionality of materials. However, their identification in Bragg coherent diffraction imaging remains a challenge and requires significant data mining. The ability to identify defects from the diffraction pattern alone would be a significant advantage when targeting specific defect types and accelerates experiment design and execution. Here, we exploit a computational tool based on a three-dimensional (3D) parametric atomistic model and a convolutional neural network to predict dislocations in a crystal from its 3D coherent diffraction pattern. Simulated diffraction patterns from several thousands of relaxed atomistic configurations of nanocrystals are used to train the neural network and to predict the presence or absence of dislocations as well as their type (screw or edge). Our study paves the way for defect-recognition in 3D coherent diffraction patterns for material science." @default.
- W3186181424 created "2021-08-02" @default.
- W3186181424 creator A5015026297 @default.
- W3186181424 creator A5018924198 @default.
- W3186181424 creator A5020490265 @default.
- W3186181424 creator A5043152703 @default.
- W3186181424 creator A5046706569 @default.
- W3186181424 creator A5052722825 @default.
- W3186181424 creator A5054371275 @default.
- W3186181424 creator A5065736899 @default.
- W3186181424 creator A5069136323 @default.
- W3186181424 creator A5071059769 @default.
- W3186181424 creator A5072537202 @default.
- W3186181424 date "2021-07-21" @default.
- W3186181424 modified "2023-09-25" @default.
- W3186181424 title "A convolutional neural network for defect classification in Bragg coherent X-ray diffraction" @default.
- W3186181424 cites W1480844027 @default.
- W3186181424 cites W1926501052 @default.
- W3186181424 cites W1969092432 @default.
- W3186181424 cites W1977111169 @default.
- W3186181424 cites W1978983195 @default.
- W3186181424 cites W1979968477 @default.
- W3186181424 cites W1994510405 @default.
- W3186181424 cites W1994661754 @default.
- W3186181424 cites W1999526218 @default.
- W3186181424 cites W2001158776 @default.
- W3186181424 cites W2002849329 @default.
- W3186181424 cites W2007593159 @default.
- W3186181424 cites W2007790099 @default.
- W3186181424 cites W2011377242 @default.
- W3186181424 cites W2015559994 @default.
- W3186181424 cites W2018943913 @default.
- W3186181424 cites W2019465613 @default.
- W3186181424 cites W2027427189 @default.
- W3186181424 cites W2032304671 @default.
- W3186181424 cites W2037545515 @default.
- W3186181424 cites W2038177296 @default.
- W3186181424 cites W2048528541 @default.
- W3186181424 cites W2070018545 @default.
- W3186181424 cites W2101466574 @default.
- W3186181424 cites W2119379479 @default.
- W3186181424 cites W2132669604 @default.
- W3186181424 cites W2325919683 @default.
- W3186181424 cites W2563505417 @default.
- W3186181424 cites W2585458504 @default.
- W3186181424 cites W2589237345 @default.
- W3186181424 cites W2766837510 @default.
- W3186181424 cites W2795319996 @default.
- W3186181424 cites W2807071916 @default.
- W3186181424 cites W2900330699 @default.
- W3186181424 cites W2971847579 @default.
- W3186181424 cites W3045940403 @default.
- W3186181424 cites W3101384698 @default.
- W3186181424 cites W3101883705 @default.
- W3186181424 cites W3102960092 @default.
- W3186181424 cites W3103790930 @default.
- W3186181424 cites W3104156061 @default.
- W3186181424 cites W3105785150 @default.
- W3186181424 cites W3106175022 @default.
- W3186181424 cites W3106215314 @default.
- W3186181424 cites W3162117927 @default.
- W3186181424 doi "https://doi.org/10.1038/s41524-021-00583-9" @default.
- W3186181424 hasPublicationYear "2021" @default.
- W3186181424 type Work @default.
- W3186181424 sameAs 3186181424 @default.
- W3186181424 citedByCount "8" @default.
- W3186181424 countsByYear W31861814242022 @default.
- W3186181424 countsByYear W31861814242023 @default.
- W3186181424 crossrefType "journal-article" @default.
- W3186181424 hasAuthorship W3186181424A5015026297 @default.
- W3186181424 hasAuthorship W3186181424A5018924198 @default.
- W3186181424 hasAuthorship W3186181424A5020490265 @default.
- W3186181424 hasAuthorship W3186181424A5043152703 @default.
- W3186181424 hasAuthorship W3186181424A5046706569 @default.
- W3186181424 hasAuthorship W3186181424A5052722825 @default.
- W3186181424 hasAuthorship W3186181424A5054371275 @default.
- W3186181424 hasAuthorship W3186181424A5065736899 @default.
- W3186181424 hasAuthorship W3186181424A5069136323 @default.
- W3186181424 hasAuthorship W3186181424A5071059769 @default.
- W3186181424 hasAuthorship W3186181424A5072537202 @default.
- W3186181424 hasBestOaLocation W31861814241 @default.
- W3186181424 hasConcept C102519508 @default.
- W3186181424 hasConcept C105795698 @default.
- W3186181424 hasConcept C117251300 @default.
- W3186181424 hasConcept C120665830 @default.
- W3186181424 hasConcept C121332964 @default.
- W3186181424 hasConcept C12952745 @default.
- W3186181424 hasConcept C154945302 @default.
- W3186181424 hasConcept C192562407 @default.
- W3186181424 hasConcept C207114421 @default.
- W3186181424 hasConcept C33347731 @default.
- W3186181424 hasConcept C33923547 @default.
- W3186181424 hasConcept C39693636 @default.
- W3186181424 hasConcept C41008148 @default.
- W3186181424 hasConcept C46141821 @default.
- W3186181424 hasConcept C50515024 @default.
- W3186181424 hasConcept C50644808 @default.
- W3186181424 hasConcept C62520636 @default.
- W3186181424 hasConcept C81363708 @default.
- W3186181424 hasConcept C81793267 @default.