Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186191775> ?p ?o ?g. }
- W3186191775 endingPage "200" @default.
- W3186191775 startingPage "186" @default.
- W3186191775 abstract "Classification methods for streaming data are not new, but very few current frameworks address all three of the most common problems with these tasks: concept drift, noise, and the exorbitant costs associated with labeling the unlabeled instances in data streams. Motivated by this gap in the field, we developed an active learning framework based on a dual-query strategy and Ebbinghaus's law of human memory cognition. Called CogDQS, the query strategy samples only the most representative instances for manual annotation based on local density and uncertainty, thus significantly reducing the cost of labeling. The policy for discerning drift from noise and replacing outdated instances with new concepts is based on the three criteria of the Ebbinghaus forgetting curve: recall, the fading period, and the memory strength. Simulations comparing CogDQS with baselines on six different data streams containing gradual drift or abrupt drift with and without noise show that our approach produces accurate, stable models with good generalization ability at minimal labeling, storage, and computation costs." @default.
- W3186191775 created "2021-08-02" @default.
- W3186191775 creator A5004882446 @default.
- W3186191775 creator A5007475662 @default.
- W3186191775 creator A5009644404 @default.
- W3186191775 creator A5032277491 @default.
- W3186191775 creator A5032786350 @default.
- W3186191775 creator A5060815634 @default.
- W3186191775 creator A5085319576 @default.
- W3186191775 date "2023-01-01" @default.
- W3186191775 modified "2023-10-17" @default.
- W3186191775 title "Online Active Learning for Drifting Data Streams" @default.
- W3186191775 cites W1529840045 @default.
- W3186191775 cites W1562693942 @default.
- W3186191775 cites W163595754 @default.
- W3186191775 cites W1970269368 @default.
- W3186191775 cites W1979895392 @default.
- W3186191775 cites W1982039810 @default.
- W3186191775 cites W2000454347 @default.
- W3186191775 cites W2010657328 @default.
- W3186191775 cites W2028489411 @default.
- W3186191775 cites W2030007850 @default.
- W3186191775 cites W2049395791 @default.
- W3186191775 cites W2052283750 @default.
- W3186191775 cites W2068128885 @default.
- W3186191775 cites W2081903609 @default.
- W3186191775 cites W2138449377 @default.
- W3186191775 cites W2143991132 @default.
- W3186191775 cites W2219140802 @default.
- W3186191775 cites W2326279864 @default.
- W3186191775 cites W2478192814 @default.
- W3186191775 cites W2489809525 @default.
- W3186191775 cites W2533488116 @default.
- W3186191775 cites W2555003309 @default.
- W3186191775 cites W2556012038 @default.
- W3186191775 cites W2556771100 @default.
- W3186191775 cites W2574867284 @default.
- W3186191775 cites W2600796512 @default.
- W3186191775 cites W2604912600 @default.
- W3186191775 cites W2751596245 @default.
- W3186191775 cites W2759984148 @default.
- W3186191775 cites W2783515059 @default.
- W3186191775 cites W2795873205 @default.
- W3186191775 cites W2798908418 @default.
- W3186191775 cites W2810921114 @default.
- W3186191775 cites W2914973938 @default.
- W3186191775 cites W2964491809 @default.
- W3186191775 cites W2993324947 @default.
- W3186191775 cites W3012607120 @default.
- W3186191775 cites W3048584318 @default.
- W3186191775 cites W3102015031 @default.
- W3186191775 cites W3103796199 @default.
- W3186191775 cites W3206604724 @default.
- W3186191775 cites W4239813528 @default.
- W3186191775 cites W813750835 @default.
- W3186191775 cites W2888592368 @default.
- W3186191775 doi "https://doi.org/10.1109/tnnls.2021.3091681" @default.
- W3186191775 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34288874" @default.
- W3186191775 hasPublicationYear "2023" @default.
- W3186191775 type Work @default.
- W3186191775 sameAs 3186191775 @default.
- W3186191775 citedByCount "6" @default.
- W3186191775 countsByYear W31861917752022 @default.
- W3186191775 countsByYear W31861917752023 @default.
- W3186191775 crossrefType "journal-article" @default.
- W3186191775 hasAuthorship W3186191775A5004882446 @default.
- W3186191775 hasAuthorship W3186191775A5007475662 @default.
- W3186191775 hasAuthorship W3186191775A5009644404 @default.
- W3186191775 hasAuthorship W3186191775A5032277491 @default.
- W3186191775 hasAuthorship W3186191775A5032786350 @default.
- W3186191775 hasAuthorship W3186191775A5060815634 @default.
- W3186191775 hasAuthorship W3186191775A5085319576 @default.
- W3186191775 hasConcept C11413529 @default.
- W3186191775 hasConcept C115961682 @default.
- W3186191775 hasConcept C119599485 @default.
- W3186191775 hasConcept C119857082 @default.
- W3186191775 hasConcept C124101348 @default.
- W3186191775 hasConcept C127413603 @default.
- W3186191775 hasConcept C134306372 @default.
- W3186191775 hasConcept C138885662 @default.
- W3186191775 hasConcept C148043351 @default.
- W3186191775 hasConcept C154945302 @default.
- W3186191775 hasConcept C177148314 @default.
- W3186191775 hasConcept C202444582 @default.
- W3186191775 hasConcept C33923547 @default.
- W3186191775 hasConcept C41008148 @default.
- W3186191775 hasConcept C41895202 @default.
- W3186191775 hasConcept C45374587 @default.
- W3186191775 hasConcept C60777511 @default.
- W3186191775 hasConcept C7149132 @default.
- W3186191775 hasConcept C89198739 @default.
- W3186191775 hasConcept C9652623 @default.
- W3186191775 hasConcept C99498987 @default.
- W3186191775 hasConceptScore W3186191775C11413529 @default.
- W3186191775 hasConceptScore W3186191775C115961682 @default.
- W3186191775 hasConceptScore W3186191775C119599485 @default.
- W3186191775 hasConceptScore W3186191775C119857082 @default.
- W3186191775 hasConceptScore W3186191775C124101348 @default.