Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186207835> ?p ?o ?g. }
- W3186207835 endingPage "2906" @default.
- W3186207835 startingPage "2906" @default.
- W3186207835 abstract "Sinkholes are sudden disasters that are usually small in size and occur at unexpected locations. They may cause serious damage to life and property. Sinkhole-prone areas can be monitored using Interferometric Synthetic Aperture Radar (InSAR) time series. Defining a pattern using InSAR-derived spatio-temporal deformations, this study presents a sinkhole pattern detector, called the Sinkhole Scanner. The Sinkhole Scanner includes a spatio-temporal mathematical model such as a 2-dimensional time evolving Gaussian function as a kernel, which moves over the study area using a sliding window approach. The scanner attempts to fit the model over deformation time series of Constantly Coherent Scatterers (CCS) intersected by the window and returns the posterior variance as a measure of goodness of fit. In this way, the scanner searches for subsiding regions resembling sinkhole shapes over a sinkhole prone area. It is designed to detect large sinkholes with a high efficiency, and small sinkholes with a lower efficiency. It is tested at four different spatial scales, and on a simulated and real set of deformation data. Real data were obtained from Sentinel-1A SLC data in IW mode, over Ireland where a large sinkhole occurred on 24 September 2018. The Sinkhole Scanner was able to identify a pattern of low posterior variance zones consistent with the simulated set. In case of the real data, it is able to identify significantly low posterior variance zones near the sinkhole area with the lowest value being 51.1% of the maximum value. The results from Sinkhole Scanner over the real sinkhole site were compared with Multiple Hypothesis Testing (MHT), which identifies Breakpoint and Heaviside temporal anomalies in the deformation time series of CCS. MHT was able to identify high likelihood for Heaviside anomalies in deformation time series of CCS near the sinkhole site about 10 epochs before the sinkhole occurrence. We show that the Sinkhole Scanner is efficient in monitoring a large area and search for sinkholes and that MHT can be used successively to identify temporal anomalies in the vicinity of areas detected by the Sinkhole Scanner. Future research may address other Sinkhole shapes whereas the underlying stochastic model may be adjusted. We conclude that the Sinkhole Scanner is important to be applied at different levels of scale to converge on potential sinkhole centers." @default.
- W3186207835 created "2021-08-02" @default.
- W3186207835 creator A5015873477 @default.
- W3186207835 creator A5059156336 @default.
- W3186207835 creator A5082935691 @default.
- W3186207835 date "2021-07-24" @default.
- W3186207835 modified "2023-09-26" @default.
- W3186207835 title "Sinkhole Scanner: A New Method to Detect Sinkhole-Related Spatio-Temporal Patterns in InSAR Deformation Time Series" @default.
- W3186207835 cites W1672745209 @default.
- W3186207835 cites W1915548913 @default.
- W3186207835 cites W1968281070 @default.
- W3186207835 cites W1983080803 @default.
- W3186207835 cites W1984670836 @default.
- W3186207835 cites W1985076527 @default.
- W3186207835 cites W2022083223 @default.
- W3186207835 cites W2029912607 @default.
- W3186207835 cites W2047029664 @default.
- W3186207835 cites W2060347559 @default.
- W3186207835 cites W2078047456 @default.
- W3186207835 cites W2092519216 @default.
- W3186207835 cites W2097762029 @default.
- W3186207835 cites W2128641954 @default.
- W3186207835 cites W2136848157 @default.
- W3186207835 cites W2174009612 @default.
- W3186207835 cites W2178500135 @default.
- W3186207835 cites W2322361007 @default.
- W3186207835 cites W2460592936 @default.
- W3186207835 cites W2461572739 @default.
- W3186207835 cites W2513674286 @default.
- W3186207835 cites W2545631585 @default.
- W3186207835 cites W2586068985 @default.
- W3186207835 cites W2774488497 @default.
- W3186207835 cites W2789617195 @default.
- W3186207835 cites W2883117535 @default.
- W3186207835 cites W2890445840 @default.
- W3186207835 cites W2911016397 @default.
- W3186207835 cites W2955593997 @default.
- W3186207835 cites W2957886055 @default.
- W3186207835 cites W2980666694 @default.
- W3186207835 cites W2982190709 @default.
- W3186207835 cites W3018551520 @default.
- W3186207835 cites W3115497793 @default.
- W3186207835 cites W3128476715 @default.
- W3186207835 cites W3138531808 @default.
- W3186207835 cites W4249744610 @default.
- W3186207835 cites W630757218 @default.
- W3186207835 doi "https://doi.org/10.3390/rs13152906" @default.
- W3186207835 hasPublicationYear "2021" @default.
- W3186207835 type Work @default.
- W3186207835 sameAs 3186207835 @default.
- W3186207835 citedByCount "2" @default.
- W3186207835 countsByYear W31862078352022 @default.
- W3186207835 countsByYear W31862078352023 @default.
- W3186207835 crossrefType "journal-article" @default.
- W3186207835 hasAuthorship W3186207835A5015873477 @default.
- W3186207835 hasAuthorship W3186207835A5059156336 @default.
- W3186207835 hasAuthorship W3186207835A5082935691 @default.
- W3186207835 hasBestOaLocation W31862078351 @default.
- W3186207835 hasConcept C120665830 @default.
- W3186207835 hasConcept C121332964 @default.
- W3186207835 hasConcept C127313418 @default.
- W3186207835 hasConcept C13280743 @default.
- W3186207835 hasConcept C151730666 @default.
- W3186207835 hasConcept C154945302 @default.
- W3186207835 hasConcept C182348080 @default.
- W3186207835 hasConcept C184652730 @default.
- W3186207835 hasConcept C22286887 @default.
- W3186207835 hasConcept C2779751349 @default.
- W3186207835 hasConcept C41008148 @default.
- W3186207835 hasConcept C49223487 @default.
- W3186207835 hasConcept C62649853 @default.
- W3186207835 hasConcept C87360688 @default.
- W3186207835 hasConceptScore W3186207835C120665830 @default.
- W3186207835 hasConceptScore W3186207835C121332964 @default.
- W3186207835 hasConceptScore W3186207835C127313418 @default.
- W3186207835 hasConceptScore W3186207835C13280743 @default.
- W3186207835 hasConceptScore W3186207835C151730666 @default.
- W3186207835 hasConceptScore W3186207835C154945302 @default.
- W3186207835 hasConceptScore W3186207835C182348080 @default.
- W3186207835 hasConceptScore W3186207835C184652730 @default.
- W3186207835 hasConceptScore W3186207835C22286887 @default.
- W3186207835 hasConceptScore W3186207835C2779751349 @default.
- W3186207835 hasConceptScore W3186207835C41008148 @default.
- W3186207835 hasConceptScore W3186207835C49223487 @default.
- W3186207835 hasConceptScore W3186207835C62649853 @default.
- W3186207835 hasConceptScore W3186207835C87360688 @default.
- W3186207835 hasIssue "15" @default.
- W3186207835 hasLocation W31862078351 @default.
- W3186207835 hasLocation W31862078352 @default.
- W3186207835 hasLocation W31862078353 @default.
- W3186207835 hasOpenAccess W3186207835 @default.
- W3186207835 hasPrimaryLocation W31862078351 @default.
- W3186207835 hasRelatedWork W1975052047 @default.
- W3186207835 hasRelatedWork W1985149224 @default.
- W3186207835 hasRelatedWork W2172865368 @default.
- W3186207835 hasRelatedWork W2322361007 @default.
- W3186207835 hasRelatedWork W2913393302 @default.
- W3186207835 hasRelatedWork W2948610875 @default.