Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186240196> ?p ?o ?g. }
- W3186240196 endingPage "102979" @default.
- W3186240196 startingPage "102979" @default.
- W3186240196 abstract "With deepened interactions between human and computer, the need for a reliable and practical system for emotion recognition has become significant. The aim of this study is to propose a practical system for estimation of a continuous measure of valence based on a few number of EEG channels. A vast spectrum of time, frequency and coherence features were implemented with linear Regression (LR), Support Vector Regression (SVR) and Multi-Layer Perceptron (MLP) models and then ranked for the performance on DEAP database using a regression-based Relief filter. Regression outcomes were also classified to compare the performance of the proposed method with the literature. Finally, a video-based emotion recognition experiment was designed and conducted on 12 subjects using F7, F8, FC2 and T7 electrodes. Magnitude Squared Coherence Estimate(MSCE) on F7–F8 with SVR model provided the highest performance on DEAP dataset. Classification of the output led to an average accuracy of 67.5%. For the gathered data, combination of MSCE and Hilbert–Huang Spectrum provided the best performance with 0.22 root mean square error and 0.67 correlation with self-reported valence in the scale of 1–9. MSCE could provide a good accuracy in estimation of Valence using 2 EEG channels on Deep dataset, and with addition of Hilbert–Huang Spectrum, it also demonstrated good accuracy and correlation with self-reported valence, in a completely different experiment. Continuous-value estimation of the valence can be achieved with only 2 EEG channels for practical applications out of the lab." @default.
- W3186240196 created "2021-08-02" @default.
- W3186240196 creator A5018572875 @default.
- W3186240196 creator A5055569621 @default.
- W3186240196 creator A5072430825 @default.
- W3186240196 creator A5078952135 @default.
- W3186240196 date "2021-09-01" @default.
- W3186240196 modified "2023-10-18" @default.
- W3186240196 title "Feature and channel selection for designing a regression-based continuous-variable emotion recognition system with two EEG channels" @default.
- W3186240196 cites W1564125987 @default.
- W3186240196 cites W1829924905 @default.
- W3186240196 cites W1947251450 @default.
- W3186240196 cites W2002055708 @default.
- W3186240196 cites W2032307786 @default.
- W3186240196 cites W2035642468 @default.
- W3186240196 cites W2045468728 @default.
- W3186240196 cites W2095905361 @default.
- W3186240196 cites W2119387367 @default.
- W3186240196 cites W2132889650 @default.
- W3186240196 cites W2134602648 @default.
- W3186240196 cites W2139564752 @default.
- W3186240196 cites W2149628368 @default.
- W3186240196 cites W2156695968 @default.
- W3186240196 cites W2167101736 @default.
- W3186240196 cites W2168317269 @default.
- W3186240196 cites W2170883741 @default.
- W3186240196 cites W2230936439 @default.
- W3186240196 cites W2232827647 @default.
- W3186240196 cites W2299839330 @default.
- W3186240196 cites W2396728763 @default.
- W3186240196 cites W2523577021 @default.
- W3186240196 cites W2625929003 @default.
- W3186240196 cites W2747839861 @default.
- W3186240196 cites W2765362197 @default.
- W3186240196 cites W2799657112 @default.
- W3186240196 cites W2806925798 @default.
- W3186240196 cites W2888735433 @default.
- W3186240196 cites W2944401411 @default.
- W3186240196 cites W2946526173 @default.
- W3186240196 cites W2962905870 @default.
- W3186240196 cites W3025334394 @default.
- W3186240196 doi "https://doi.org/10.1016/j.bspc.2021.102979" @default.
- W3186240196 hasPublicationYear "2021" @default.
- W3186240196 type Work @default.
- W3186240196 sameAs 3186240196 @default.
- W3186240196 citedByCount "13" @default.
- W3186240196 countsByYear W31862401962021 @default.
- W3186240196 countsByYear W31862401962022 @default.
- W3186240196 countsByYear W31862401962023 @default.
- W3186240196 crossrefType "journal-article" @default.
- W3186240196 hasAuthorship W3186240196A5018572875 @default.
- W3186240196 hasAuthorship W3186240196A5055569621 @default.
- W3186240196 hasAuthorship W3186240196A5072430825 @default.
- W3186240196 hasAuthorship W3186240196A5078952135 @default.
- W3186240196 hasConcept C105795698 @default.
- W3186240196 hasConcept C117220453 @default.
- W3186240196 hasConcept C118552586 @default.
- W3186240196 hasConcept C119857082 @default.
- W3186240196 hasConcept C121332964 @default.
- W3186240196 hasConcept C12267149 @default.
- W3186240196 hasConcept C139945424 @default.
- W3186240196 hasConcept C148483581 @default.
- W3186240196 hasConcept C152877465 @default.
- W3186240196 hasConcept C153180895 @default.
- W3186240196 hasConcept C154945302 @default.
- W3186240196 hasConcept C15744967 @default.
- W3186240196 hasConcept C168900304 @default.
- W3186240196 hasConcept C179717631 @default.
- W3186240196 hasConcept C2524010 @default.
- W3186240196 hasConcept C2781181686 @default.
- W3186240196 hasConcept C28490314 @default.
- W3186240196 hasConcept C33923547 @default.
- W3186240196 hasConcept C41008148 @default.
- W3186240196 hasConcept C48921125 @default.
- W3186240196 hasConcept C50644808 @default.
- W3186240196 hasConcept C522805319 @default.
- W3186240196 hasConcept C60908668 @default.
- W3186240196 hasConcept C62520636 @default.
- W3186240196 hasConcept C83546350 @default.
- W3186240196 hasConceptScore W3186240196C105795698 @default.
- W3186240196 hasConceptScore W3186240196C117220453 @default.
- W3186240196 hasConceptScore W3186240196C118552586 @default.
- W3186240196 hasConceptScore W3186240196C119857082 @default.
- W3186240196 hasConceptScore W3186240196C121332964 @default.
- W3186240196 hasConceptScore W3186240196C12267149 @default.
- W3186240196 hasConceptScore W3186240196C139945424 @default.
- W3186240196 hasConceptScore W3186240196C148483581 @default.
- W3186240196 hasConceptScore W3186240196C152877465 @default.
- W3186240196 hasConceptScore W3186240196C153180895 @default.
- W3186240196 hasConceptScore W3186240196C154945302 @default.
- W3186240196 hasConceptScore W3186240196C15744967 @default.
- W3186240196 hasConceptScore W3186240196C168900304 @default.
- W3186240196 hasConceptScore W3186240196C179717631 @default.
- W3186240196 hasConceptScore W3186240196C2524010 @default.
- W3186240196 hasConceptScore W3186240196C2781181686 @default.
- W3186240196 hasConceptScore W3186240196C28490314 @default.
- W3186240196 hasConceptScore W3186240196C33923547 @default.
- W3186240196 hasConceptScore W3186240196C41008148 @default.