Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186263328> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3186263328 endingPage "2286" @default.
- W3186263328 startingPage "2283" @default.
- W3186263328 abstract "Cybersecurity has become one of the most sought-after domains in the field of computer science. Protection of computing resources and information against disruptive cyber threats has garnered utmost attention in recent times, owing to the conventional methods used in the field that often fall short of detecting or preventing the ever-evolving collection of malware. With the advent of new technologies such as Machine learning and Artificial intelligence, it is possible to streamline the approaches in the field of Cybersecurity. These technologies can be used to detect and prevent malicious content, thereby developing successful security solutions. The right AI tech could help us process huge volumes of threat data, discover anomalies and effectively eliminate potential threats. Currently, the most common approach involves using regular expressions to sequentially compare the incoming request or its vector with a predefined set of signatures. Though this approach is widely prevalent, it falls short in terms of accuracy. This is due to the fact that the signatures are not updated often, and several logical problems or loops come up when regular expressions are used within thousands of individual rules. In this project, we aim to identify various injections among neutral input vectors using ML models and will be predicting whether the vectors are injections or not. An ensemble of a number of ML models is used to build a voting mechanism to have an accurate prediction. For the sake of demonstration, the application consists of a frontend built using react and a python flask backend server" @default.
- W3186263328 created "2021-08-02" @default.
- W3186263328 creator A5013959134 @default.
- W3186263328 creator A5021090831 @default.
- W3186263328 creator A5032743047 @default.
- W3186263328 date "2021-06-28" @default.
- W3186263328 modified "2023-09-27" @default.
- W3186263328 title "Reusable AI-based ensemble model for detecting SQL injection in service-oriented architectures" @default.
- W3186263328 hasPublicationYear "2021" @default.
- W3186263328 type Work @default.
- W3186263328 sameAs 3186263328 @default.
- W3186263328 citedByCount "0" @default.
- W3186263328 crossrefType "journal-article" @default.
- W3186263328 hasAuthorship W3186263328A5013959134 @default.
- W3186263328 hasAuthorship W3186263328A5021090831 @default.
- W3186263328 hasAuthorship W3186263328A5032743047 @default.
- W3186263328 hasConcept C119857082 @default.
- W3186263328 hasConcept C124101348 @default.
- W3186263328 hasConcept C136764020 @default.
- W3186263328 hasConcept C150451098 @default.
- W3186263328 hasConcept C154945302 @default.
- W3186263328 hasConcept C164120249 @default.
- W3186263328 hasConcept C194222762 @default.
- W3186263328 hasConcept C199360897 @default.
- W3186263328 hasConcept C202444582 @default.
- W3186263328 hasConcept C33923547 @default.
- W3186263328 hasConcept C38652104 @default.
- W3186263328 hasConcept C41008148 @default.
- W3186263328 hasConcept C519991488 @default.
- W3186263328 hasConcept C541664917 @default.
- W3186263328 hasConcept C9652623 @default.
- W3186263328 hasConcept C97854310 @default.
- W3186263328 hasConcept C98045186 @default.
- W3186263328 hasConceptScore W3186263328C119857082 @default.
- W3186263328 hasConceptScore W3186263328C124101348 @default.
- W3186263328 hasConceptScore W3186263328C136764020 @default.
- W3186263328 hasConceptScore W3186263328C150451098 @default.
- W3186263328 hasConceptScore W3186263328C154945302 @default.
- W3186263328 hasConceptScore W3186263328C164120249 @default.
- W3186263328 hasConceptScore W3186263328C194222762 @default.
- W3186263328 hasConceptScore W3186263328C199360897 @default.
- W3186263328 hasConceptScore W3186263328C202444582 @default.
- W3186263328 hasConceptScore W3186263328C33923547 @default.
- W3186263328 hasConceptScore W3186263328C38652104 @default.
- W3186263328 hasConceptScore W3186263328C41008148 @default.
- W3186263328 hasConceptScore W3186263328C519991488 @default.
- W3186263328 hasConceptScore W3186263328C541664917 @default.
- W3186263328 hasConceptScore W3186263328C9652623 @default.
- W3186263328 hasConceptScore W3186263328C97854310 @default.
- W3186263328 hasConceptScore W3186263328C98045186 @default.
- W3186263328 hasIssue "3" @default.
- W3186263328 hasLocation W31862633281 @default.
- W3186263328 hasOpenAccess W3186263328 @default.
- W3186263328 hasPrimaryLocation W31862633281 @default.
- W3186263328 hasRelatedWork W2132521552 @default.
- W3186263328 hasRelatedWork W2769239713 @default.
- W3186263328 hasRelatedWork W2789959313 @default.
- W3186263328 hasRelatedWork W2810012024 @default.
- W3186263328 hasRelatedWork W2894238255 @default.
- W3186263328 hasRelatedWork W2902256374 @default.
- W3186263328 hasRelatedWork W2909251399 @default.
- W3186263328 hasRelatedWork W2952771461 @default.
- W3186263328 hasRelatedWork W3005272923 @default.
- W3186263328 hasRelatedWork W3017410307 @default.
- W3186263328 hasRelatedWork W3024936479 @default.
- W3186263328 hasRelatedWork W3025123382 @default.
- W3186263328 hasRelatedWork W3129401991 @default.
- W3186263328 hasRelatedWork W3135004615 @default.
- W3186263328 hasRelatedWork W3160639996 @default.
- W3186263328 hasRelatedWork W3173665891 @default.
- W3186263328 hasRelatedWork W3198078171 @default.
- W3186263328 hasRelatedWork W3198078654 @default.
- W3186263328 hasRelatedWork W3200915317 @default.
- W3186263328 hasRelatedWork W3093542375 @default.
- W3186263328 hasVolume "7" @default.
- W3186263328 isParatext "false" @default.
- W3186263328 isRetracted "false" @default.
- W3186263328 magId "3186263328" @default.
- W3186263328 workType "article" @default.