Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186408972> ?p ?o ?g. }
- W3186408972 endingPage "49" @default.
- W3186408972 startingPage "39" @default.
- W3186408972 abstract "Abstract According to ITU-R, 5G wireless communication’s primary goal is achieving too high data rates in the broadcast region. Polar coding has emerged as a pivotal channel coding technique for 5G to accomplish the previously mentioned goals. Subsequently, the Polar- Coded Non-Orthogonal Multiple Access (PC-NOMA) is observed as a favorable channel accessing technique for sporadic traffic of low data rate devices in a 5G Internet of Things (IoT) environment. Deep Learning algorithms are getting revolutionized in data analysis, Prediction, and decision-making by employing neural network hierarchy. When these Deep Learning algorithms get incorporated in channel estimation or resource allocation of Polar-coded NOMA, they appear to be a promising and robust solution for an uncertain channel. Meanwhile, ultra-reliable low-latency communication, one among the vital 5G use cases, has tremendous potential applications in the Internet of things generation. Consequently, the challenges of integrating deep learning techniques with PC-NOMA for URLLC use cases are reviewed, and the adaptability of Deep Learning algorithms for channel estimation and resource allocation of NOMA are surveyed here.KeywordsDeep learningDNNMachine learningNOMAPolar codesURLLC" @default.
- W3186408972 created "2021-08-02" @default.
- W3186408972 creator A5010045870 @default.
- W3186408972 creator A5022074835 @default.
- W3186408972 creator A5088700558 @default.
- W3186408972 date "2021-07-21" @default.
- W3186408972 modified "2023-09-27" @default.
- W3186408972 title "A Study on the Adaptability of Deep Learning-Based Polar-Coded NOMA in Ultra-Reliable Low-Latency Communications" @default.
- W3186408972 cites W1972808865 @default.
- W3186408972 cites W2051270424 @default.
- W3186408972 cites W2106045225 @default.
- W3186408972 cites W2150498905 @default.
- W3186408972 cites W2584943905 @default.
- W3186408972 cites W2589785008 @default.
- W3186408972 cites W2736402963 @default.
- W3186408972 cites W2770861014 @default.
- W3186408972 cites W2772435313 @default.
- W3186408972 cites W2776439332 @default.
- W3186408972 cites W2808769300 @default.
- W3186408972 cites W2883419663 @default.
- W3186408972 cites W2883900340 @default.
- W3186408972 cites W2889372359 @default.
- W3186408972 cites W2892078410 @default.
- W3186408972 cites W2901561898 @default.
- W3186408972 cites W2908422853 @default.
- W3186408972 cites W2909746880 @default.
- W3186408972 cites W2911728646 @default.
- W3186408972 cites W2940272532 @default.
- W3186408972 cites W2942868874 @default.
- W3186408972 cites W2962992649 @default.
- W3186408972 cites W2963389341 @default.
- W3186408972 cites W2963408536 @default.
- W3186408972 cites W2972747336 @default.
- W3186408972 cites W2977673367 @default.
- W3186408972 cites W2980068837 @default.
- W3186408972 cites W2981838423 @default.
- W3186408972 cites W2990066343 @default.
- W3186408972 cites W2993383518 @default.
- W3186408972 cites W2996615169 @default.
- W3186408972 cites W2997831226 @default.
- W3186408972 cites W3000255556 @default.
- W3186408972 cites W3001690422 @default.
- W3186408972 cites W3003976154 @default.
- W3186408972 cites W3004902407 @default.
- W3186408972 cites W3006643426 @default.
- W3186408972 cites W3012427268 @default.
- W3186408972 cites W3023949510 @default.
- W3186408972 cites W3038483080 @default.
- W3186408972 cites W3097128974 @default.
- W3186408972 cites W3103626079 @default.
- W3186408972 doi "https://doi.org/10.1007/978-981-16-2008-9_4" @default.
- W3186408972 hasPublicationYear "2021" @default.
- W3186408972 type Work @default.
- W3186408972 sameAs 3186408972 @default.
- W3186408972 citedByCount "1" @default.
- W3186408972 countsByYear W31864089722022 @default.
- W3186408972 crossrefType "book-chapter" @default.
- W3186408972 hasAuthorship W3186408972A5010045870 @default.
- W3186408972 hasAuthorship W3186408972A5022074835 @default.
- W3186408972 hasAuthorship W3186408972A5088700558 @default.
- W3186408972 hasConcept C105795698 @default.
- W3186408972 hasConcept C108583219 @default.
- W3186408972 hasConcept C127162648 @default.
- W3186408972 hasConcept C138660444 @default.
- W3186408972 hasConcept C154945302 @default.
- W3186408972 hasConcept C177606310 @default.
- W3186408972 hasConcept C179518139 @default.
- W3186408972 hasConcept C18903297 @default.
- W3186408972 hasConcept C2775918612 @default.
- W3186408972 hasConcept C31258907 @default.
- W3186408972 hasConcept C33923547 @default.
- W3186408972 hasConcept C41008148 @default.
- W3186408972 hasConcept C555944384 @default.
- W3186408972 hasConcept C76155785 @default.
- W3186408972 hasConcept C82876162 @default.
- W3186408972 hasConcept C86803240 @default.
- W3186408972 hasConceptScore W3186408972C105795698 @default.
- W3186408972 hasConceptScore W3186408972C108583219 @default.
- W3186408972 hasConceptScore W3186408972C127162648 @default.
- W3186408972 hasConceptScore W3186408972C138660444 @default.
- W3186408972 hasConceptScore W3186408972C154945302 @default.
- W3186408972 hasConceptScore W3186408972C177606310 @default.
- W3186408972 hasConceptScore W3186408972C179518139 @default.
- W3186408972 hasConceptScore W3186408972C18903297 @default.
- W3186408972 hasConceptScore W3186408972C2775918612 @default.
- W3186408972 hasConceptScore W3186408972C31258907 @default.
- W3186408972 hasConceptScore W3186408972C33923547 @default.
- W3186408972 hasConceptScore W3186408972C41008148 @default.
- W3186408972 hasConceptScore W3186408972C555944384 @default.
- W3186408972 hasConceptScore W3186408972C76155785 @default.
- W3186408972 hasConceptScore W3186408972C82876162 @default.
- W3186408972 hasConceptScore W3186408972C86803240 @default.
- W3186408972 hasLocation W31864089721 @default.
- W3186408972 hasOpenAccess W3186408972 @default.
- W3186408972 hasPrimaryLocation W31864089721 @default.
- W3186408972 hasRelatedWork W1970437106 @default.
- W3186408972 hasRelatedWork W2130966263 @default.
- W3186408972 hasRelatedWork W2385763152 @default.