Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186454526> ?p ?o ?g. }
- W3186454526 abstract "Normalizing flows can generate complex target distributions and thus show promise in many applications in Bayesian statistics as an alternative or complement to MCMC for sampling posteriors. Since no data set from the target posterior distribution is available beforehand, the flow is typically trained using the reverse Kullback-Leibler (KL) divergence that only requires samples from a base distribution. This strategy may perform poorly when the posterior is complicated and hard to sample with an untrained normalizing flow. Here we explore a distinct training strategy, using the direct KL divergence as loss, in which samples from the posterior are generated by (i) assisting a local MCMC algorithm on the posterior with a normalizing flow to accelerate its mixing rate and (ii) using the data generated this way to train the flow. The method only requires a limited amount of textit{a~priori} input about the posterior, and can be used to estimate the evidence required for model validation, as we illustrate on examples." @default.
- W3186454526 created "2021-08-02" @default.
- W3186454526 creator A5001522727 @default.
- W3186454526 creator A5044193587 @default.
- W3186454526 creator A5071403558 @default.
- W3186454526 date "2021-07-16" @default.
- W3186454526 modified "2023-09-27" @default.
- W3186454526 title "Efficient Bayesian Sampling Using Normalizing Flows to Assist Markov Chain Monte Carlo Methods" @default.
- W3186454526 cites W1513873506 @default.
- W3186454526 cites W1983452151 @default.
- W3186454526 cites W1990119892 @default.
- W3186454526 cites W1995713768 @default.
- W3186454526 cites W2069739265 @default.
- W3186454526 cites W2070792261 @default.
- W3186454526 cites W2071048859 @default.
- W3186454526 cites W2073840106 @default.
- W3186454526 cites W2085767032 @default.
- W3186454526 cites W2104067967 @default.
- W3186454526 cites W2165497092 @default.
- W3186454526 cites W2742689864 @default.
- W3186454526 cites W2893674448 @default.
- W3186454526 cites W2893859774 @default.
- W3186454526 cites W2962695743 @default.
- W3186454526 cites W2962887178 @default.
- W3186454526 cites W2963090522 @default.
- W3186454526 cites W2963462241 @default.
- W3186454526 cites W2963565380 @default.
- W3186454526 cites W2964020555 @default.
- W3186454526 cites W2972246420 @default.
- W3186454526 cites W2997192173 @default.
- W3186454526 cites W3006106210 @default.
- W3186454526 cites W3105326952 @default.
- W3186454526 cites W3121345697 @default.
- W3186454526 cites W3136086722 @default.
- W3186454526 cites W3150807214 @default.
- W3186454526 cites W3165289325 @default.
- W3186454526 hasPublicationYear "2021" @default.
- W3186454526 type Work @default.
- W3186454526 sameAs 3186454526 @default.
- W3186454526 citedByCount "0" @default.
- W3186454526 crossrefType "posted-content" @default.
- W3186454526 hasAuthorship W3186454526A5001522727 @default.
- W3186454526 hasAuthorship W3186454526A5044193587 @default.
- W3186454526 hasAuthorship W3186454526A5071403558 @default.
- W3186454526 hasConcept C104317684 @default.
- W3186454526 hasConcept C106131492 @default.
- W3186454526 hasConcept C107673813 @default.
- W3186454526 hasConcept C111350023 @default.
- W3186454526 hasConcept C111472728 @default.
- W3186454526 hasConcept C112313634 @default.
- W3186454526 hasConcept C11413529 @default.
- W3186454526 hasConcept C127716648 @default.
- W3186454526 hasConcept C138885662 @default.
- W3186454526 hasConcept C140779682 @default.
- W3186454526 hasConcept C154945302 @default.
- W3186454526 hasConcept C171752962 @default.
- W3186454526 hasConcept C177769412 @default.
- W3186454526 hasConcept C185592680 @default.
- W3186454526 hasConcept C188082640 @default.
- W3186454526 hasConcept C207390915 @default.
- W3186454526 hasConcept C31972630 @default.
- W3186454526 hasConcept C33923547 @default.
- W3186454526 hasConcept C41008148 @default.
- W3186454526 hasConcept C41895202 @default.
- W3186454526 hasConcept C55493867 @default.
- W3186454526 hasConcept C57830394 @default.
- W3186454526 hasConcept C75553542 @default.
- W3186454526 hasConceptScore W3186454526C104317684 @default.
- W3186454526 hasConceptScore W3186454526C106131492 @default.
- W3186454526 hasConceptScore W3186454526C107673813 @default.
- W3186454526 hasConceptScore W3186454526C111350023 @default.
- W3186454526 hasConceptScore W3186454526C111472728 @default.
- W3186454526 hasConceptScore W3186454526C112313634 @default.
- W3186454526 hasConceptScore W3186454526C11413529 @default.
- W3186454526 hasConceptScore W3186454526C127716648 @default.
- W3186454526 hasConceptScore W3186454526C138885662 @default.
- W3186454526 hasConceptScore W3186454526C140779682 @default.
- W3186454526 hasConceptScore W3186454526C154945302 @default.
- W3186454526 hasConceptScore W3186454526C171752962 @default.
- W3186454526 hasConceptScore W3186454526C177769412 @default.
- W3186454526 hasConceptScore W3186454526C185592680 @default.
- W3186454526 hasConceptScore W3186454526C188082640 @default.
- W3186454526 hasConceptScore W3186454526C207390915 @default.
- W3186454526 hasConceptScore W3186454526C31972630 @default.
- W3186454526 hasConceptScore W3186454526C33923547 @default.
- W3186454526 hasConceptScore W3186454526C41008148 @default.
- W3186454526 hasConceptScore W3186454526C41895202 @default.
- W3186454526 hasConceptScore W3186454526C55493867 @default.
- W3186454526 hasConceptScore W3186454526C57830394 @default.
- W3186454526 hasConceptScore W3186454526C75553542 @default.
- W3186454526 hasLocation W31864545261 @default.
- W3186454526 hasOpenAccess W3186454526 @default.
- W3186454526 hasPrimaryLocation W31864545261 @default.
- W3186454526 hasRelatedWork W1536565998 @default.
- W3186454526 hasRelatedWork W1893220790 @default.
- W3186454526 hasRelatedWork W1967042859 @default.
- W3186454526 hasRelatedWork W2072475940 @default.
- W3186454526 hasRelatedWork W2083154374 @default.
- W3186454526 hasRelatedWork W2099242249 @default.
- W3186454526 hasRelatedWork W2394656956 @default.