Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186461170> ?p ?o ?g. }
- W3186461170 abstract "Quantum noise is the key challenge in Noisy Intermediate-Scale Quantum (NISQ) computers. Previous work for mitigating noise has primarily focused on gate-level or pulse-level noise-adaptive compilation. However, limited research has explored a higher level of optimization by making the quantum circuits themselves resilient to noise.In this paper, we propose QuantumNAS, a comprehensive framework for noise-adaptive co-search of the variational circuit and qubit mapping. Variational quantum circuits are a promising approach for constructing quantum neural networks for machine learning and variational ansatzes for quantum simulation. However, finding the best variational circuit and its optimal parameters is challenging due to the large design space and parameter training cost. We propose to decouple the circuit search from parameter training by introducing a novel SuperCircuit. The SuperCircuit is constructed with multiple layers of pre-defined parameterized gates (e.g., U3 and CU3) and trained by iteratively sampling and updating the parameter subsets (SubCircuits) of it. It provides an accurate estimation of SubCircuits performance trained from scratch. Then we perform an evolutionary co-search of SubCircuit and its qubit mapping. The SubCircuit performance is estimated with parameters inherited from SuperCircuit and simulated with real device noise models. Finally, we perform iterative gate pruning and finetuning to remove redundant gates in a fine-grained manner.Extensively evaluated with 12 quantum machine learning (QML) and variational quantum eigensolver (VQE) benchmarks on 14 quantum computers, QuantumNAS significantly outperforms noise-unaware search, human, random, and existing noise-adaptive qubit mapping baselines. For QML tasks, QuantumNAS is the first to demonstrate over 95% 2-class, 85% 4-class, and 32% 10-class classification accuracy on real quantum computers. It also achieves the lowest eigenvalue for VQE tasks on H<inf>2</inf>, H<inf>2</inf>O, LiH, CH<inf>4</inf>, BeH<inf>2</inf> compared with UCCSD baselines. We also open-source the TorchQuantum library for fast training of parameterized quantum circuits to facilitate future research." @default.
- W3186461170 created "2021-08-02" @default.
- W3186461170 creator A5011883763 @default.
- W3186461170 creator A5012944782 @default.
- W3186461170 creator A5021398655 @default.
- W3186461170 creator A5022883365 @default.
- W3186461170 creator A5070926896 @default.
- W3186461170 creator A5083979678 @default.
- W3186461170 creator A5090386129 @default.
- W3186461170 date "2022-04-01" @default.
- W3186461170 modified "2023-10-16" @default.
- W3186461170 title "QuantumNAS: Noise-Adaptive Search for Robust Quantum Circuits" @default.
- W3186461170 cites W1492999010 @default.
- W3186461170 cites W1675244148 @default.
- W3186461170 cites W1877184193 @default.
- W3186461170 cites W1975709210 @default.
- W3186461170 cites W1988369744 @default.
- W3186461170 cites W2003132673 @default.
- W3186461170 cites W2017477211 @default.
- W3186461170 cites W2027003240 @default.
- W3186461170 cites W2060887031 @default.
- W3186461170 cites W2084652510 @default.
- W3186461170 cites W2098614082 @default.
- W3186461170 cites W2103956991 @default.
- W3186461170 cites W2123364531 @default.
- W3186461170 cites W2128685508 @default.
- W3186461170 cites W2137147061 @default.
- W3186461170 cites W2161685427 @default.
- W3186461170 cites W2257937122 @default.
- W3186461170 cites W2266138411 @default.
- W3186461170 cites W2268604949 @default.
- W3186461170 cites W2297918601 @default.
- W3186461170 cites W2559394418 @default.
- W3186461170 cites W2562526363 @default.
- W3186461170 cites W2582390145 @default.
- W3186461170 cites W2755255888 @default.
- W3186461170 cites W2781738013 @default.
- W3186461170 cites W2794444783 @default.
- W3186461170 cites W2798434869 @default.
- W3186461170 cites W2888774813 @default.
- W3186461170 cites W2889938786 @default.
- W3186461170 cites W2913992572 @default.
- W3186461170 cites W2930242962 @default.
- W3186461170 cites W2950805899 @default.
- W3186461170 cites W2951131343 @default.
- W3186461170 cites W3000698183 @default.
- W3186461170 cites W3007475506 @default.
- W3186461170 cites W3016832937 @default.
- W3186461170 cites W3035251378 @default.
- W3186461170 cites W3096533519 @default.
- W3186461170 cites W3098768946 @default.
- W3186461170 cites W3099200606 @default.
- W3186461170 cites W3100843411 @default.
- W3186461170 cites W3101119256 @default.
- W3186461170 cites W3101122608 @default.
- W3186461170 cites W3103810096 @default.
- W3186461170 cites W3103872322 @default.
- W3186461170 cites W3105677655 @default.
- W3186461170 cites W3106349779 @default.
- W3186461170 cites W3109154950 @default.
- W3186461170 cites W3129510818 @default.
- W3186461170 cites W3130011271 @default.
- W3186461170 cites W3132743969 @default.
- W3186461170 cites W3154057396 @default.
- W3186461170 cites W3159727696 @default.
- W3186461170 cites W3201056462 @default.
- W3186461170 cites W4200496545 @default.
- W3186461170 cites W4233474106 @default.
- W3186461170 cites W4254297188 @default.
- W3186461170 cites W3035961444 @default.
- W3186461170 doi "https://doi.org/10.1109/hpca53966.2022.00057" @default.
- W3186461170 hasPublicationYear "2022" @default.
- W3186461170 type Work @default.
- W3186461170 sameAs 3186461170 @default.
- W3186461170 citedByCount "21" @default.
- W3186461170 countsByYear W31864611702021 @default.
- W3186461170 countsByYear W31864611702022 @default.
- W3186461170 countsByYear W31864611702023 @default.
- W3186461170 crossrefType "proceedings-article" @default.
- W3186461170 hasAuthorship W3186461170A5011883763 @default.
- W3186461170 hasAuthorship W3186461170A5012944782 @default.
- W3186461170 hasAuthorship W3186461170A5021398655 @default.
- W3186461170 hasAuthorship W3186461170A5022883365 @default.
- W3186461170 hasAuthorship W3186461170A5070926896 @default.
- W3186461170 hasAuthorship W3186461170A5083979678 @default.
- W3186461170 hasAuthorship W3186461170A5090386129 @default.
- W3186461170 hasBestOaLocation W31864611702 @default.
- W3186461170 hasConcept C113775141 @default.
- W3186461170 hasConcept C11413529 @default.
- W3186461170 hasConcept C115961682 @default.
- W3186461170 hasConcept C121332964 @default.
- W3186461170 hasConcept C124148022 @default.
- W3186461170 hasConcept C154945302 @default.
- W3186461170 hasConcept C182953411 @default.
- W3186461170 hasConcept C203087015 @default.
- W3186461170 hasConcept C41008148 @default.
- W3186461170 hasConcept C51003876 @default.
- W3186461170 hasConcept C58053490 @default.
- W3186461170 hasConcept C58849907 @default.
- W3186461170 hasConcept C62520636 @default.