Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186496939> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3186496939 endingPage "193" @default.
- W3186496939 startingPage "175" @default.
- W3186496939 abstract "Wireless sensor networks monitor environments that amendment apace over time. This dynamic behavior of the networks is either caused by external factors or initiated by the system itself. Machine learning techniques help us to work with extreme conditions and assist in avoiding the redesign of the network. The prominent feature of training the machine or network itself to modify according to such kinds of environments is being introduced in the sensor networks using machine learning techniques. However, the performance of the sensor networks has many constraints like energy efficiency, information measure or bandwidth, etc. Localization of nodes is one of the major issues that have to be worked on, as proper placement of nodes solves above-mentioned performance issues. The sensors in wireless networks gather knowledge regarding the objects they are to be sensed by which machine learning algorithms conjointly evoke several sensible solutions for localization of nodes that maximize resource utilization and prolong the lifetime of the network. The machine learning algorithms are categorized into three categories, namely supervised learning, unsupervised learning and reinforcement learning algorithms. As localization is the method of deciding the geographic coordinates of network’s nodes and its relevant components as position awareness of sensing element of every sensor nodes plays a vital role in network communication for further process. In this chapter, we are going to focus on how the localization issue in wireless sensor networks can be solved using the three categorized machine learning algorithms." @default.
- W3186496939 created "2021-08-02" @default.
- W3186496939 creator A5054738146 @default.
- W3186496939 creator A5081014039 @default.
- W3186496939 date "2021-01-01" @default.
- W3186496939 modified "2023-10-14" @default.
- W3186496939 title "Localization Techniques Using Machine Learning Algorithms" @default.
- W3186496939 cites W1545751238 @default.
- W3186496939 cites W1969453269 @default.
- W3186496939 cites W1970679066 @default.
- W3186496939 cites W2016008700 @default.
- W3186496939 cites W2034179412 @default.
- W3186496939 cites W2043139445 @default.
- W3186496939 cites W2096414356 @default.
- W3186496939 cites W2103611185 @default.
- W3186496939 cites W2106813267 @default.
- W3186496939 cites W2111336388 @default.
- W3186496939 cites W2139788616 @default.
- W3186496939 cites W2276520448 @default.
- W3186496939 cites W2333248310 @default.
- W3186496939 cites W2482942414 @default.
- W3186496939 cites W2508747906 @default.
- W3186496939 cites W2511784323 @default.
- W3186496939 cites W2530034939 @default.
- W3186496939 cites W2736140282 @default.
- W3186496939 cites W2751642701 @default.
- W3186496939 cites W2807744283 @default.
- W3186496939 cites W2891671729 @default.
- W3186496939 cites W2903328861 @default.
- W3186496939 cites W2903456984 @default.
- W3186496939 cites W2916641566 @default.
- W3186496939 cites W2990384746 @default.
- W3186496939 cites W3003829094 @default.
- W3186496939 cites W3003894546 @default.
- W3186496939 cites W3013207662 @default.
- W3186496939 cites W3100857292 @default.
- W3186496939 cites W3147800036 @default.
- W3186496939 cites W2119907349 @default.
- W3186496939 doi "https://doi.org/10.1007/978-981-16-0386-0_10" @default.
- W3186496939 hasPublicationYear "2021" @default.
- W3186496939 type Work @default.
- W3186496939 sameAs 3186496939 @default.
- W3186496939 citedByCount "2" @default.
- W3186496939 countsByYear W31864969392021 @default.
- W3186496939 countsByYear W31864969392022 @default.
- W3186496939 crossrefType "book-chapter" @default.
- W3186496939 hasAuthorship W3186496939A5054738146 @default.
- W3186496939 hasAuthorship W3186496939A5081014039 @default.
- W3186496939 hasConcept C11413529 @default.
- W3186496939 hasConcept C119857082 @default.
- W3186496939 hasConcept C154945302 @default.
- W3186496939 hasConcept C41008148 @default.
- W3186496939 hasConceptScore W3186496939C11413529 @default.
- W3186496939 hasConceptScore W3186496939C119857082 @default.
- W3186496939 hasConceptScore W3186496939C154945302 @default.
- W3186496939 hasConceptScore W3186496939C41008148 @default.
- W3186496939 hasLocation W31864969391 @default.
- W3186496939 hasOpenAccess W3186496939 @default.
- W3186496939 hasPrimaryLocation W31864969391 @default.
- W3186496939 hasRelatedWork W2889453578 @default.
- W3186496939 hasRelatedWork W2961085424 @default.
- W3186496939 hasRelatedWork W3046775127 @default.
- W3186496939 hasRelatedWork W3170094116 @default.
- W3186496939 hasRelatedWork W3209574120 @default.
- W3186496939 hasRelatedWork W4205958290 @default.
- W3186496939 hasRelatedWork W4286629047 @default.
- W3186496939 hasRelatedWork W4306321456 @default.
- W3186496939 hasRelatedWork W4306674287 @default.
- W3186496939 hasRelatedWork W4224009465 @default.
- W3186496939 isParatext "false" @default.
- W3186496939 isRetracted "false" @default.
- W3186496939 magId "3186496939" @default.
- W3186496939 workType "book-chapter" @default.