Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186593818> ?p ?o ?g. }
- W3186593818 endingPage "3863" @default.
- W3186593818 startingPage "3848" @default.
- W3186593818 abstract "Magnetic Resonance Imaging (MRI) is a significant technique used to diagnose brain abnormalities at early stages. This paper proposes a novel method to classify brain abnormalities (tumor and stroke) in MRI images using a hybridized machine learning algorithm. The proposed methodology includes feature extraction (texture, intensity, and shape), feature selection, and classification. The texture features are extracted by intending a neoteric directional-based quantized extrema pattern. The intensity features are extracted by proposing the clustering-based wavelet transform. The shape-based extraction is performed using conventional shape descriptors. Maximum A Priori (MAP) based firefly algorithm is proposed for feature selection. Finally, hybridized support vector-based random forest classifier is used for the classification. The MRI brain tumor and stroke images are detected and categorized into four classes which are a high-grade tumor, a low-grade tumor, an acute stroke, and a sub-acute stroke. Besides, three different regions are identified in tumor detection such as edema, and tumor (necrotic and non-enhancing) region. The accuracy of the proposed method is analyzed using various performance metrics in comparison with the few state-of-the-art classification methods. The proposed methodology successfully achieves a reliable accuracy of 88.3% for classifying brain tumor cases and 99.2% for brain stroke classification. The best F-score of 0.91 and the least FPR of 0.06 are attained while considering brain tumor classification against the proposed HSVFC. Likewise, HSVFC has 0.99 as the best F-score and a 0.0 FPR in the case of brain stroke classification. The experimental analysis offers a maximum mean accuracy of different classifiers for categorizing MRI brain tumor are 76.55%, 49.24%, 65.12%, 74.36%, 69.25%,and 55.61% for HSVFC, SVM, FFNN, DC, ResNet-18 and KNN respectively. Similarly, in identifying MRI brain stroke, the average accuracy for HSVFC, SVM, FFNN, DC, ResNet-18 and KNN are 98.17%, 53.40%, 85.8%, 87.5%, 70.06%, and 61.24%, respectively is achieved." @default.
- W3186593818 created "2021-08-02" @default.
- W3186593818 creator A5017023860 @default.
- W3186593818 creator A5020425987 @default.
- W3186593818 creator A5027525633 @default.
- W3186593818 creator A5029561942 @default.
- W3186593818 creator A5083119779 @default.
- W3186593818 date "2022-01-01" @default.
- W3186593818 modified "2023-10-17" @default.
- W3186593818 title "Pattern Descriptors Orientation and MAP Firefly Algorithm Based Brain Pathology Classification Using Hybridized Machine Learning Algorithm" @default.
- W3186593818 cites W1598068104 @default.
- W3186593818 cites W1641498739 @default.
- W3186593818 cites W1770510060 @default.
- W3186593818 cites W1946635378 @default.
- W3186593818 cites W1963678325 @default.
- W3186593818 cites W2068339271 @default.
- W3186593818 cites W2069284781 @default.
- W3186593818 cites W2217077692 @default.
- W3186593818 cites W2265378931 @default.
- W3186593818 cites W2308961649 @default.
- W3186593818 cites W2341670955 @default.
- W3186593818 cites W2464635803 @default.
- W3186593818 cites W2484736472 @default.
- W3186593818 cites W2555298153 @default.
- W3186593818 cites W2556630758 @default.
- W3186593818 cites W2588755956 @default.
- W3186593818 cites W2760298101 @default.
- W3186593818 cites W2765490497 @default.
- W3186593818 cites W2765955914 @default.
- W3186593818 cites W2768956845 @default.
- W3186593818 cites W2770870214 @default.
- W3186593818 cites W2789335814 @default.
- W3186593818 cites W2808312143 @default.
- W3186593818 cites W2934445978 @default.
- W3186593818 cites W2951007335 @default.
- W3186593818 cites W2992806896 @default.
- W3186593818 cites W2993516307 @default.
- W3186593818 cites W2994924670 @default.
- W3186593818 cites W2999211502 @default.
- W3186593818 cites W3004022591 @default.
- W3186593818 cites W3007562589 @default.
- W3186593818 cites W3021820492 @default.
- W3186593818 cites W3091780972 @default.
- W3186593818 cites W3091860120 @default.
- W3186593818 cites W3100455055 @default.
- W3186593818 cites W3105078060 @default.
- W3186593818 cites W3134161433 @default.
- W3186593818 cites W3135079895 @default.
- W3186593818 cites W3148169001 @default.
- W3186593818 cites W4245172903 @default.
- W3186593818 doi "https://doi.org/10.1109/access.2021.3100549" @default.
- W3186593818 hasPublicationYear "2022" @default.
- W3186593818 type Work @default.
- W3186593818 sameAs 3186593818 @default.
- W3186593818 citedByCount "16" @default.
- W3186593818 countsByYear W31865938182022 @default.
- W3186593818 countsByYear W31865938182023 @default.
- W3186593818 crossrefType "journal-article" @default.
- W3186593818 hasAuthorship W3186593818A5017023860 @default.
- W3186593818 hasAuthorship W3186593818A5020425987 @default.
- W3186593818 hasAuthorship W3186593818A5027525633 @default.
- W3186593818 hasAuthorship W3186593818A5029561942 @default.
- W3186593818 hasAuthorship W3186593818A5083119779 @default.
- W3186593818 hasBestOaLocation W31865938181 @default.
- W3186593818 hasConcept C110083411 @default.
- W3186593818 hasConcept C11413529 @default.
- W3186593818 hasConcept C12267149 @default.
- W3186593818 hasConcept C134306372 @default.
- W3186593818 hasConcept C142724271 @default.
- W3186593818 hasConcept C148483581 @default.
- W3186593818 hasConcept C153180895 @default.
- W3186593818 hasConcept C154945302 @default.
- W3186593818 hasConcept C154982244 @default.
- W3186593818 hasConcept C16345878 @default.
- W3186593818 hasConcept C169258074 @default.
- W3186593818 hasConcept C186633575 @default.
- W3186593818 hasConcept C2524010 @default.
- W3186593818 hasConcept C2779130545 @default.
- W3186593818 hasConcept C33923547 @default.
- W3186593818 hasConcept C41008148 @default.
- W3186593818 hasConcept C52001869 @default.
- W3186593818 hasConcept C52622490 @default.
- W3186593818 hasConcept C71924100 @default.
- W3186593818 hasConcept C73555534 @default.
- W3186593818 hasConcept C85617194 @default.
- W3186593818 hasConcept C95623464 @default.
- W3186593818 hasConceptScore W3186593818C110083411 @default.
- W3186593818 hasConceptScore W3186593818C11413529 @default.
- W3186593818 hasConceptScore W3186593818C12267149 @default.
- W3186593818 hasConceptScore W3186593818C134306372 @default.
- W3186593818 hasConceptScore W3186593818C142724271 @default.
- W3186593818 hasConceptScore W3186593818C148483581 @default.
- W3186593818 hasConceptScore W3186593818C153180895 @default.
- W3186593818 hasConceptScore W3186593818C154945302 @default.
- W3186593818 hasConceptScore W3186593818C154982244 @default.
- W3186593818 hasConceptScore W3186593818C16345878 @default.
- W3186593818 hasConceptScore W3186593818C169258074 @default.
- W3186593818 hasConceptScore W3186593818C186633575 @default.