Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186634945> ?p ?o ?g. }
- W3186634945 endingPage "234" @default.
- W3186634945 startingPage "227" @default.
- W3186634945 abstract "AimSentinel lymph node status is a central prognostic factor for melanomas. However, the surgical excision involves some risks for affected patients. In this study, we therefore aimed to develop a digital biomarker that can predict lymph node metastasis non-invasively from digitised H&E slides of primary melanoma tumours.MethodsA total of 415 H&E slides from primary melanoma tumours with known sentinel node (SN) status from three German university hospitals and one private pathological practice were digitised (150 SN positive/265 SN negative). Two hundred ninety-one slides were used to train artificial neural networks (ANNs). The remaining 124 slides were used to test the ability of the ANNs to predict sentinel status. ANNs were trained and/or tested on data sets that were matched or not matched between SN-positive and SN-negative cases for patient age, ulceration, and tumour thickness, factors that are known to correlate with lymph node status.ResultsThe best accuracy was achieved by an ANN that was trained and tested on unmatched cases (61.8% ± 0.2%) area under the receiver operating characteristic (AUROC). In contrast, ANNs that were trained and/or tested on matched cases achieved (55.0% ± 3.5%) AUROC or less.ConclusionOur results indicate that the image classifier can predict lymph node status to some, albeit so far not clinically relevant, extent. It may do so by mostly detecting equivalents of factors on histological slides that are already known to correlate with lymph node status. Our results provide a basis for future research with larger data cohorts." @default.
- W3186634945 created "2021-08-02" @default.
- W3186634945 creator A5006404204 @default.
- W3186634945 creator A5007887862 @default.
- W3186634945 creator A5016355689 @default.
- W3186634945 creator A5022293880 @default.
- W3186634945 creator A5025256131 @default.
- W3186634945 creator A5026788516 @default.
- W3186634945 creator A5034365278 @default.
- W3186634945 creator A5038031102 @default.
- W3186634945 creator A5044736874 @default.
- W3186634945 creator A5052915645 @default.
- W3186634945 creator A5055619378 @default.
- W3186634945 creator A5057226132 @default.
- W3186634945 creator A5058641804 @default.
- W3186634945 creator A5063448654 @default.
- W3186634945 creator A5066175045 @default.
- W3186634945 creator A5068203422 @default.
- W3186634945 creator A5072203765 @default.
- W3186634945 creator A5072737484 @default.
- W3186634945 creator A5073483894 @default.
- W3186634945 creator A5079922466 @default.
- W3186634945 creator A5082098822 @default.
- W3186634945 creator A5084073390 @default.
- W3186634945 creator A5086466437 @default.
- W3186634945 creator A5091513635 @default.
- W3186634945 date "2021-09-01" @default.
- W3186634945 modified "2023-10-12" @default.
- W3186634945 title "Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumours" @default.
- W3186634945 cites W1966716734 @default.
- W3186634945 cites W2472783597 @default.
- W3186634945 cites W2626341685 @default.
- W3186634945 cites W2754884994 @default.
- W3186634945 cites W2772025297 @default.
- W3186634945 cites W2786147899 @default.
- W3186634945 cites W2796710340 @default.
- W3186634945 cites W2800104500 @default.
- W3186634945 cites W2888997030 @default.
- W3186634945 cites W2891688191 @default.
- W3186634945 cites W2899425762 @default.
- W3186634945 cites W2911974350 @default.
- W3186634945 cites W2914174319 @default.
- W3186634945 cites W2914568698 @default.
- W3186634945 cites W2937742783 @default.
- W3186634945 cites W2942732466 @default.
- W3186634945 cites W2945626616 @default.
- W3186634945 cites W2952481429 @default.
- W3186634945 cites W2952857864 @default.
- W3186634945 cites W2955021100 @default.
- W3186634945 cites W2956228567 @default.
- W3186634945 cites W2963258365 @default.
- W3186634945 cites W2965051082 @default.
- W3186634945 cites W2967473922 @default.
- W3186634945 cites W2972588473 @default.
- W3186634945 cites W2981358604 @default.
- W3186634945 cites W3016446614 @default.
- W3186634945 cites W3039522214 @default.
- W3186634945 cites W3092050964 @default.
- W3186634945 cites W3190348435 @default.
- W3186634945 cites W3196396697 @default.
- W3186634945 cites W4232619572 @default.
- W3186634945 doi "https://doi.org/10.1016/j.ejca.2021.05.026" @default.
- W3186634945 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34298373" @default.
- W3186634945 hasPublicationYear "2021" @default.
- W3186634945 type Work @default.
- W3186634945 sameAs 3186634945 @default.
- W3186634945 citedByCount "28" @default.
- W3186634945 countsByYear W31866349452021 @default.
- W3186634945 countsByYear W31866349452022 @default.
- W3186634945 countsByYear W31866349452023 @default.
- W3186634945 crossrefType "journal-article" @default.
- W3186634945 hasAuthorship W3186634945A5006404204 @default.
- W3186634945 hasAuthorship W3186634945A5007887862 @default.
- W3186634945 hasAuthorship W3186634945A5016355689 @default.
- W3186634945 hasAuthorship W3186634945A5022293880 @default.
- W3186634945 hasAuthorship W3186634945A5025256131 @default.
- W3186634945 hasAuthorship W3186634945A5026788516 @default.
- W3186634945 hasAuthorship W3186634945A5034365278 @default.
- W3186634945 hasAuthorship W3186634945A5038031102 @default.
- W3186634945 hasAuthorship W3186634945A5044736874 @default.
- W3186634945 hasAuthorship W3186634945A5052915645 @default.
- W3186634945 hasAuthorship W3186634945A5055619378 @default.
- W3186634945 hasAuthorship W3186634945A5057226132 @default.
- W3186634945 hasAuthorship W3186634945A5058641804 @default.
- W3186634945 hasAuthorship W3186634945A5063448654 @default.
- W3186634945 hasAuthorship W3186634945A5066175045 @default.
- W3186634945 hasAuthorship W3186634945A5068203422 @default.
- W3186634945 hasAuthorship W3186634945A5072203765 @default.
- W3186634945 hasAuthorship W3186634945A5072737484 @default.
- W3186634945 hasAuthorship W3186634945A5073483894 @default.
- W3186634945 hasAuthorship W3186634945A5079922466 @default.
- W3186634945 hasAuthorship W3186634945A5082098822 @default.
- W3186634945 hasAuthorship W3186634945A5084073390 @default.
- W3186634945 hasAuthorship W3186634945A5086466437 @default.
- W3186634945 hasAuthorship W3186634945A5091513635 @default.
- W3186634945 hasBestOaLocation W31866349451 @default.
- W3186634945 hasConcept C121608353 @default.
- W3186634945 hasConcept C126322002 @default.